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ABSTRACT 

A mathematical model of a computer system for multi-user data 
base management is presented.  Rules of cooperation, a scheduling 
strategy, and a safety algorithm are shown to provide harmonious 
cooperation among processes while preventing conflict, deadlock, and 
permanent blocking.  Throughout the development, the discussion is 
related to a set of COBOL programs operating on a collection of 
COBOL files. 
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PREFACE 

The work reported herein was performed under Project 671A, 
Multi-User Data Base Management task, for which the project leaders 
were Mrs. Judith A. Clapp (MITRE) and Dr. John B. Goodenough (ESD). 

The starting point can most easily be identified by reference 
to the works of Habermann^-1' and Silver(2) - that is, I set out to 
see what could be done to achieve multi-user data sharing if I 
assumed the general approach of the referenced works. 

In (1) Dr. Habermann established in 1967 a mathematical model of 
a system of cooperating abstract machines; to my knowledge, there has 
been no significant refinement of the model nor replacement for the 
model since that time.  The latter remark should be understood in the 
context "given the same general problem, information, and desired 
properties." Other deadlock-free resource sharing models have tended 
to go in the direction of refinement by requiring more information 
about a process (abstract machine)—this leads to the potential for 
performance improvement but does not, in my opinion, provide a new 
significant model.  One problem with the model, as reported by Dr. 
Habermann in his popularized version'") of his doctoral thesis, has 
been pointed out by Holt in (3), wherein he offers a solution to the 
problem of permanent blocking of a process. 

A principal part of the model   is a multi-dimensional resource 
sharing discipline (multi-dimensional loan office model), wherein 
resources are partitioned into a finite number of equivalence classes 
with a finite number of indistinguishable members in each class.  It 
is interesting to note that a good deal of the theoretical work appear- 
ing in (1) with respect to the abstract machines (such as the notions 
of "coupled machines", "system of abstract machines", "task-flow 
diagram", "feed-back task", "cooperation in conversational mode", 
"hierarchical system", "the difficult case that what is to be considered 
as a borrowed coin, may in its turn become a customer of the loan- 
office", and others) seems to have been largely ignored in the litera- 
ture, although these notions are a significant part of the original 
work.t1) 

In any case it is quite clear that direct application of Dr. 
Habermann's model to the sharing of data leads to an artificial 
methodology, for we do not generally have the case that a data base 
may be partitioned into equivalence classes of indistinguishable 
objects.  This is certainly no criticism of Dr. Habermann's work— 
clearly, there was not the intention on his part that the data sharing 
problem would be solved by his model. 
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(2) 
The influence of Dr. Habermann's work on the work of Mr. Silver 

is apparent.  The motivation for the choice of binary relation between 
elements of the data base may well have derived from the discussion of 
hierarchical structure by Dr. Habermann,'-*-' in which he defines a 
hierarchical system of abstract machines to be one in which the collec- 
tion of classes of equivalent machines does not contain any loops. 
The graph-theoretic approach adopted by Mr. Silver has the nice property 
that circuits in digraphs correspond nicely to loops in the collection 
of classes of equivalent machines in Dr. Habermann's work.  It is not 
surprising that the loop-free digraph in Mr. Silver's model represents 
a safe state of the system. 

In the present work, the notion of binary relation among elements 
of the data base has been borrowed from Mr. Silver's work (no such 
relation among elements of equivalence classes appeared in (1)); 
however, its use has been generalized by not specifying the properties 
of the relation (in particular, the binary relation can be that defined 
by Mr. Silver,^ '   can be an equivalence relation such as "identity", 
or can be chosen to reflect relative security classification of items). 
The notion of the safe permutation of processes has been borrowed from 
Dr. Habermann's work.'D  It is important to note that all the asser- 
tations about the model to be presented in this work which use the 
safe permutation can be restated in terms of an acyclic digraph—the 
former representation (permutation) is more amenable to symbolic mani- 
pulation, while the latter (digraph and its associated adjacency 
matrix) may well be more suitable for computer computations. 

(2) 
In Mr. Silver's work   the "safe situation" was equated with 

the existence of a loop-free digraph representation of the processes. 
In the present work, the definition of safe situation has been care- 
fully chosen (as in Dr. Habermann's work) so that it becomes quite 
clear that the existence of a safe permutation (acyclic digraph) is 
a sufficient but not necessary condition for safety.  This makes 
clear the possibility that one may discover a weaker necessary con- 
dition for safety. 

The comments made by Mr. Silver in (2), to wit 

1) "The extension of the definitions and theorems to cover 
this complication" (each process has associated with it 
a set R±     (its read set)) "is straightforward, but leads 
to tiresome case analysis." 

2) "Allowing new processes to enter the scene does introduce 
a new and more subtle form of lockout: ..." (permanent 
blocking—see Holt^3^), 



are reflected in the present work. The case analysis for read-only 
use is handled rigorously and the permanent blocking problem is 
investigated and solved rigorously.  In addition, the present work 
goes beyond the work and suggestions of Mr. Silver'^) by introducing 
inquiry-use-mode which achieves more significant sharing of the data 
base than allowed for in the model of (2). 

My appreciation goes to Mrs. Nancy H. Anschuetz, director of 
MITRE Department 73 Research Center, for her assistance to me in 
obtaining specific materials and for her continual service to me in 
bringing potentially relevant material to my attention. 

I am indebted to Dr. David E. Bell (MITRE, Project 671A) for 
his critical review of the mathematical portions of the paper and 
for the several changes he suggested for clarification of the develop- 
ment and to Mr. Joseph E. Sullivan (MITRE, D73) and Mrs. Judith A. Clapp 
for their several helpful comments with respect to the discussion 
of COBOL programs. 
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SECTION I 

INTRODUCTION 

GENERAL CONSIDERATIONS 

Just a passing familiarity with the subject of multi-user data 
base management easily convinces one that the attendant problems are 
numerous and complex.  The reader who is unaware of the problems will 
find ample, relevant exposition in (7) by Glore et al. 

The problems, fortunately I think, are common to a number of 
technical subjects which at first sight may seem only tangentially 
related. Resource sharing, mutual exclusion techniques, multipro- 
cessor synchronization, and in general, synthesis and analysis of 
control mechanisms for parallel systems - these and other subjects 
have relevant technical relationships to the subject of multi-user 
data base sharing. 

I decided at the outset of the work, reported in the following 
sections, that the investigation would start at some clearly defined 
point and would, hopefully, proceed in one direction at a time.  This 
decision accounts for two characteristics of this report: 

1) the material is presented in the order in which the investi- 
gation proceeded - as a result, the reader will have the 
advantage of following a coherent, developing thread of 
reasoning; 

2) the development leads to the gross specification of a single 
class of systems. 

The result, I think, is satisfactory; for, the systems implied 
by the constructed model can perform real jobs in a multi-user envi- 
ronment . 

I chose to approach the problems and develop solutions using 
these guidelines: 

•that the work should offer specific solutions, 

•that the treatment should be as mathematically rigorous as 
required to show that proffered solutions are indeed solutions, 

•that the work should be related to an easily realizable imple- 
mentation of the mathematical model. 



The last guideline accounts for those sections which deal with COBOL 
programs processing COBOL files.  While the model is more general 
than the latter example, I feel that the example has a clear, direct 
bearing on the processing needs of the sponsor of the current applied 
research effort. 

SUMMARY OF THE REPORT 

In Section II a formal model of a system is presented.  This 
model describes a set of abstract machines concurrently operating on 
a common data base.  Rules are stated which are intended to avoid 
conflict and deadlock with respect to the use of a shared data base. 
That the rules suffice to provide this protection is shown in the 
form of a number of theorems with proofs.  In addition, an algorithm 
is described which allows a system to uniquely determine whether or 
not a safe situation (free of conflict and no possibility of deadlock) 
exists.  This section represents the major step toward the development 
of an adequate model; within the framework established it becomes 
easy to attack and solve specific problems. 

In Section III the formal model is reconstructed in terms pf 
COBOL programs operating on a set of COBOL files.  All of the material 
of Section II is reviewed, in an intuitive way rather than by theorem 
and proof, and the characteristics of the system are discussed.  This 
exercise also serves to clarify some of the shortcomings of the 
initial model and to point to major areas which require further 
investigation. 

In Section IV two of the shortcomings of the model are removed. 
First, the model is extended to allow for read-only use of data.  In 
this extension, read-only use is a property associated with a process 
rather than a set of data - the trivial case wherein a set of data 
is identified as read-only is not treated.  Second, the model is 
extended to allow a dynamically changing set of processes to operate 
on the data base; this extension introduces the problem of permanent 
blocking, for which a solution is offered. 

In Section V a representation of the states and behavior of the 
model developed in Section IV is presented.  This representation has 
some of the characteristics of both Petri nets and graph programs; 
its uses are as a compact description and as a specification for a 
simulation of the model. 

In Section VI the formal model is once again applied to a set of 
COBOL programs operating on a set of COBOL files.  The discussion 
deals with characteristics of the hypothetical system in general, 



a dynamically changing set of programs, multiple read-only use of a 
file, and coordination of data sharing with the sharing of other 
resources of the system.  Finally, a gross qualitative analysis of 
the system concludes that the potential for concurrent use of files 
must be increased in order to increase the usefulness of the hypo- 
thetical system. 

In Section VII the difficult problem of allowing, in some sense, 
that many programs may simultaneously be reading and writing the 
same file is taken up in terms of the formal model.  A method, called 
inquiry-use mode, is developed, and it is shown that the processes 
of the system cooperate harmoniously. 

In Section VIII, which is an extension of the discussion of 
Section VI, the hypothetical system of COBOL programs with the 
addition of inquiry-use mode is examined. 

AUTHOR'S CONCLUSIONS AND RECOMMENDATIONS 

The principal objective of the work - to construct a canonical 
specification for a reasonable multi-user, data sharing system - has 
been achieved in the sense that the constructed model provides guid- 
ance for the design of a multi-user data base management system which 
has the properties: 

1) allows multiple-user data base sharing, to the extent that 
many programs may concurrently be reading and writing the 
same file in a restricted-use mode; 

2) conflict, deadlock, and permanent blocking do not occur; 

3) integrity of the data base is guaranteed without qualification; 

4) integrity of information generated from the data base can be 
achieved. 

The use of a mathematical discipline in the definition and solu- 
tion of problems has proved helpful - to this author, the method was 
necessary, for at many turns in the development what seemed intui- 
tively correct was mathematical nonsense, with the result that many 

pitfalls were avoided. 

The section of the paper which presents a description of the 
states and behavior of the model is both interesting and useful.  The 
description can be used as a specification for construction of a simu- 
lation; the method of description, borrowing as it does from Petri net 
and graph program techniques, is interesting as a technique. 



The experience of producing this paper leads me to two recommenda- 
tions: 

1) that the development of a model of a multi-user data sharing 
system which does not require foreknowledge of data require- 
ments should be attempted; it would be informative to compare 
such a model to the one presented herein; 

2) that the available mathematical tools for representations, 
synthesis, and analysis of systems be brought to bear on any 
such undertaking as presented herein—when the tools are not 
available, they should be developed. 



SECTION II 

AN ABSTRACT MODEL OF COOPERATING PROCESSES 

INTRODUCTION 

In this section we establish a basic model of a system of pro- 
grams concurrently operating on a data base. We give precise meanings 
to the elements of the model so that they may be dealt with mathemati- 
cally.  The elements of the system are also abstracted from most of 
the considerations pertinent to real programs and data bases - con- 
siderations which, initially, are irrelevant to our purpose. 

STRUCTURE OF THE DATA 

definition 

notation 

definition 

definition 

A data base, p_, is a finite, non-empty set, j^, of 
elements together with a binary relation, R, defined 
over the elements of S.  The relation JR has an 
unspecified set of properties. 

Small letters denote elements of S; e.g., a, b, c, 
.... Capital letters denote subsets of S; e.g., T, 
U, V   If a is related to b by R, we write 
aRb.  We denote the data base by D = (S, R).  We 
will also use the ordinary set operators in their 
usual way; e.g., T C U means for every t e T, t e U. 

a and b are comparable if either aRb or bRa.  We 
denote this by a +-*• b. 

T and U are comparable if 3t e T and u e U such 
that t •*-*•    u.  We denote this by T -*-»- u. 

COOPERATING PROCESSES 

We consider the cooperation of a finite set of processes 
operating concurrently on a data base D = (S, R).  Careful attention 
must be given to the meanings of the terms "process" and "concurrently. 

A process is defined in terms of an abstract machine in the 
sense of Habermann.^'  In the application of the model to be devel- 
oped, the term "process" can be used to describe a broader class of 
computer programs, as seems to have been intended by Silver.^ '     For 
our purposes here, it will prove convenient to use the following defi- 
nitions and notions. 



A sequential machine is a quintuple (A, X, Y, f, g) where: 

A is a finite set, the elements of which are called states; 

X is a finite set, the elements of which are called input signals; 

Y is a finite set, the elements of which are called output signals; 

f is a mapping of A x X in A; 

g is a mapping of A x X in Y; 

the sets A, X, and Y are non-empty. 

Let (W, •) and (Z, •) be semigroups where: 

• is a concatenation operation; 

W is generated by elements of X; 

Z is generated by elements of Y. 

Extend f and g to mappings of A x W in A and A x W in Z, respec- 
tively, as follows; 

let w = x • x_ • ... • x be an element of W and a, e A; 
1   2        n j 

the element f(a., w) = a.,  can be calculated from the recursive 
J      j+n 

relation a... = f(a .,, x.) for each i e {1, 2, ..., n}; 

the element g(a , w) = z where z = y  • y„ • ... • y can be 

calculated from the sequence a., a.. n a,,. -,   and the 
j   j+1       j+i-1 

relation y. = g(a... ,, x,) for each i e {l, 2, ..., n}. 
I     j+i-1  i 

Consequently, we have the simple calculation rules: 

(1)  f(a , w±  • w2) = f(f(a,, w1), w2) 

(2) g(a , wx • w2) = g(a , wx) • g(f(a., v^), w2) 

These rules are a formal expression of our ordinary intuitive notion 
of the operation of a finite state sequential machine. 



Let a special state a  in A be defined; call it the initial 
state and let it be unique  (i.e., for every w e W and a e A, 
a ^ ao, g(a0, w) ^ g(a, w)).  Next we identify a special subset of 
W in order to specialize the sequential machine with an initial 
state to our purposes. 

Let w e W be such that f(a0, w) = a0; let wj_ • w2 = w; if 
f(aQ, w^) ±  a0 for every factorization of w then w is called 
the contents of a task.  We collect such elements w e W in the 
special subset  I C W.  Hence,  I is a subset of W such that for 
every w e I: 

(i)  f(a , w) = a ; 
o       o 

(ii)  f(a , w.) 4  a  for every factorization w, • w„ = w. 
o  1    o 12 

In other words,  I contains all those sequences of input signals 
for which it is true that, starting in its initial state, the sequen- 
tial machine will again be in its initial state at the end of the 
sequence of input signals but will not return to its initial state 
before the end of the sequence of input signals.  We may similarly 
define a subset 0 C Z, where elements of 0 are called the 
output of a task. 

We can now precisely define the terms "abstract machine" and 
"sequential process." 

An abstract machine is a sequential machine with an initial 
state for which the subset I is non-empty. 

A sequential process is the series of states generated by cal- 
culation of f(a , w). 

o 

Henceforth, we will be concerned only with the special case that the 
abstract machine processes a task - that is, w e I defines the 
input signals for the machine, which starts at its initial state. 
A run of the abstract machine is a sequential process defined for 
some w e I.  When the abstract machine is out of its initial state 
and in some other of its states or is in its initial state and has 
been given a w e I to "process," we say that the abstract machine 
is engaged. 

Having defined precisely what we are dealing with, we will hence- 
forth simply refer to a process; a process is to be understood to be 
an abstract machine which processes tasks.  The existence of a process 
is continuous in the sense that it exists both when engaged and when 
not engaged.  The term "process" is employed (instead of abstract 



machine) because of its intuitive appeal - that is, the author wishe6 
to encourage the reader to use his own notion of "process," relying 
on the preceding definitions only when they are crucial to the develop- 
ment.  So, for example, most often it will suffice to think of a 
process as a procedure in execution; or, one might think of a process 
as an abstract entity whose states are defined by execution of the 
instructions of a procedure by a processor. 

In the operation of a set of processes, time is considered to 
be a counter, the value of which equals the number of actions per- 
formed since the start.  An action itself is considered timeless. 

In the proceedings of a set of processes, two actions never 
coincide in time, so that a given increase of time is caused by only 
one process.  Thus, we suppose that time progresses in a discrete 
series of steps, at each of which just one process takes an action; 
the discrete progress of time is independent of the success or failure 
of the action. 

Each process takes a finite number of actions; thus, it is 
guaranteed that a process, once engaged (begun), will terminate its 
processing. 

In this section of the paper we will deal with a finite, fixed 
set of processes P_ = {P;L> P2» •••» Pn^» where Pi denotes a pro- 
cess. We will be concerned with one run of the system (P, D):  that 
is, 

1) the system (P, D) starts out with all P e P_ in initial 
states; 

2) a run of the system extends from the time of first engagement 
of a P e P_ to the time of finishing of every P e P_ which 
has been engaged; during a run of the system, if P^ 
finishes, P-^ may not be engaged again until the run of the 
system is terminated (every P e P_ is again in initial 
state). 

CONFLICT AND DEADLOCK 

Let P_ = {P-p P2» •••» Pri^ be a set of processes operating on 
p_.  Let each P^ have associated with it some subset W^ of S  at 
each moment of its engagement.  The subset W^ is to be understood 
to contain all elements of S which P^ is currently processing in 
any way. 



definition       ?±    conflicts with Pj if Wi «->- Wj.  That is to 
say that both P^ and Pj  are concurrently pro- 
cessing elements of S, say a^  and aA ,  such 
that a-jjtej  or ajRa^. 

Suppose we make a rule which says "Pi may not change its asso- 
ciated W^ if the change would cause it to conflict with some other 
process." The rule provides protection from conflict but allows  P_ 
to become deadlocked on D, as shown in the following example: 

Suppose that, at moment  t = t0  in the proceedings of P_,  P-^ 
and P* are not in conflict (i.e., Wi •*-*• Wj does not hold). 
Suppose further that the next action for Pj  is to increase Wi  to 
Wi (Wi 9 WP  such that Wl *"*" Wj •  and that the next action for pj 
is to increase Wj  to Wj  such that Wi •*-*•  W^.  Neither P^ nor 
Pj  is allowed to proceed under the proposed rule.  Generalization 
to the n processes of P_ shows that P_ can become deadlocked on 
D. 

Clearly, we must do something to avoid deadlock; at the same 
time, we wish to allow P_ to operate on D in a sharing way:  that 
is, we wish to avoid partitioning of S into disjoint subsets asso- 
ciated with the processes of P_. 

To this end, with each P^ we associate V-f C S such that, at 
any moment t = t^ during a run of Pi, Wi C Vi for all t > t^. Vi 
is a subset of S which establishes a bound on the area of the data 
base in which Pi will operate; it is a prediction of possible data 
requirements of P^ At any moment, Vi is the subset of S on 
which P^ has a claim while W^ is the subset of S which Pi is 
using. Both W^ and Vi may change during the life (a run) of Pi 
subject to the restrictions: 

(i) W± C V± 

(ii)  if  V.,  is changed to  V! , then V! C V.. 
i        6       1        1-1 

POTENTIAL BLOCKING 

We may now define a concept of potential blocking (a prediction 
of possible conflict) among processes in terms of their associated 
subsets V. 



definition       P^ potentially blocks Pj  (notation:  P^ •*• Pj) 
if i 4  j  and W± *•*•  V..  P± •* Pj means that ?± 

has wandered in ID into an area on which PJ has 
established a claim, although at the moment, it 
may be that W^ •*•+ Wj  does not hold. 

We will normally say simply that P^ blocks Pj when P± "•* Pj; 
we will mean P^ is potentially blocking Pj. 

THE SAFE SITUATION 

We may now also formalize our intuitive notion of harmonious 
cooperation among the processes of P_. 

definition The processes of P_ are in a safe situation at 
moment t if for every process Pfc the moment 
tjf > t can be reached at which the relation: 

P -/-> P.  for every j e N - { 1, 2 n} holds.        (i) 

NOTE:  P. -h>  P.  means P.  is not potentially blocked by P.,. J     k        k       v ' j 

RULES OF COOPERATION 

We now state a set of rules which, we will show, guarantee 
that the processes of P_ may harmoniously operate on D; that is, 
the data base may be shared while it is guaranteed that deadlock will 
not occur. 

Rule 1:  Each process P^ begins operation with a bound,  V^,  on 
its Wi.  (Initially,  W^ = <£; i.e., the empty set.) 

Rule  2:     A process     PJL    may not  change  its   associated    W^     if  the 
change would cause it to conflict with some other process. 

Rule 3:  At each moment of time, one of the processes, say P, takes 
an action, changing its state in one of four ways: 

(1) P finishes, reducing W and V to the empty set, 

(2) P changes W,  subject to W C V, 

(3) P changes V to V',  subject to V* C V, or 

(4) V and W remain unchanged. 
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HARMONIOUS COOPERATION IN (P, D) 

Theorem 1 Let P change its state according to R3. If in 
the new state ?^ •*• P, then this was true in the 
old state as well. 

Proof: Pi •+ P means W-^ «->- V'  (where V'  denotes the 
bound for P after its state change).  W\» 
implies 
But -' 
Pi + 

3w e Wj_ and v' e V  such that 
V e V since V' c V so that 
P  in the old state as well. 

Wi 

w 
V 

V 
-> v' 
and 

Theorem 2 Assume that the next action of each P^ is to 
increase W^ to V^  (i.e., make W^ = V^).  If 
the set of processes is in a safe situation at 
this moment, then there exists some P^ which is 
not potentially blocked by any other process. 

Proof: Assume the theorem is false, 
j 3i(j)  such that P 

Kj) 

Then for every 
P. at this moment. 

Kj) 

so that if P^ 

implies  W. 
Kj) 

makes V.j we have W^Q) ^->-  wj , 
but this is not allowed by Rule 2.  Therefore, Pj 

WJ - 
i 

j 
may not take its next action.  But this is true 
for all the processes.  Since no process may take 
its next action, there is no time tj  at which 
Pj  is not potentially blocked (i.e., the situation 
is not safe). 

Theorem 3 If the set of processes P can be arranged in a 
sequence  P]_, ?2>   •••> pn 
k e {1, 2, . .. , n-l}, 

such that for each P^, 

P -h   P.  for j e {k+1, k+2, 
J     * 

then the situation is safe. 

, n}, (2) 
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Proof: Suppose that a permutation of the processes has the 
property (2).  Then relation (1) holds for Pj 
(i.e., Pj —H>  Pi for every j e N). By Theorem 1, 
P^ may complete all of its actions since it cannot 
become blocked by any action it takes and hence 
cannot conflict with any other process.  Thus, there 
exists some moment t'  at which P^ can finish 
its processing.  At moment t',  relation (1) holds 
for P2> so that P£ may be allowed to proceed to 
completion.  Continuing in this way, we find that 
for each P^ there is some moment t^ at which 
P. -h>  P,  for every 1 e N. j     k        J     J 

definition A safe permutation is an arrangement of the processes 
which satisfies (2). 

Corollary 1: If a safe permutation of the processes exists at 
moment  t,  then it is guaranteed that some process 
P can take its next action in accordance with the 
rules, and the situation will be safe at moment t+1. 

Proof: Follows from Theorem 3; in fact, is merely a restate- 
ment of Theorem 3 to make explicit the guarantee 
that some process may take its next action without 
causing the situation to become unsafe. 

Theorem 4 Assume that the next action of each Pj^ is to 
increase W^ to Vfc.  Then the set of processes is 
safe if and only if a safe permutation of the pro- 
cesses exists. 

Proof: If a safe permutation exists, then the situation is 
safe by Theorem 3.  Conversely, assume that the 
situation is safe at moment t = tQ.  By Theorem 2, 
there is some process which is not potentially 
blocked by any other process.  Call this process 
Pi.  (If more than one exists, select any one.) 
Let Kj = {Pj : j ^ 1}.  Let Pi proceed to com- 
pletion, say at time t'.  By Theorem 2 at time 
t = t', there exists some process in K-^ which 
is not potentially blocked by any other process in 
K-,.  Select one such process and name it P£-  At 
tii me t = t (2) clearly holds for P2.  Continue 
by induction, eventually constructing a permutation 

o> 

Pi. ?2 n which satisfies (2) at time t = tc 
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definition A loop in _P = {?lt  P2, . .. , Pn>  is a set of dis- 
tinct processes P|, P£, ..., P£  (k 2. 2)  such 
that P{ •+ P£ -+ . . . •+  P£ •+ Pj_.  If no loops exist 
in JP,  then P_ is said to be loop^free. 

Lemma 1: If the set of processes P_ is loop-free, then 
there exists some process which is not blocked by 
any other process. 

Proof: Assume the lemma is false 
3i(j) 
say 

Then, for every  j, 
such that ?i(i) •* Pj •  Pick any process, 

P[.     Let Kx = P - {P{}.  Then, there exis ts 
some process, say P2,  in K^ such that P£ •* P]_. 
Construct K2 = Ki - {P^}  and pick P$.  Continue 
in this way; at each step of the process if we pick 
the next process from KJ  (by K we mean comple- 
ment of the set K) that introduces a loop.  Even- 
tually we may come to ^-1    which contains only 
one process; this process, by assumption, is blocked 
b^y some other process, but the latter must be in 
K n  so that a loop exists. n-1 r 

Theorem 5 If the set of processes 
situation is safe. 

P_ is loop-free, then the 

Proof: Assume the set is loop-free.  Then there exists 
some process, say Pi, which is not blocked by 

Let Ki = {PH 1*1} No any other process, 
loop exists in K-^; hence, there exists some pro- 
cess, say P2, which is not blocked by any other 
process in K]_.  Continuing inductively, we can 
construct a safe permutation.  Hence, by Theorem 3, 
the situation is safe. 

Theorem 6 Assume that the next action of each Pi,  is to 
increase W^  to V^. 
only if it is safe. 

The set is loop-free if and 

Proof: Assume the set  is  loop-free.     Then it  is  safe by 
Theorem 5.     Conversely,   assume it  is safe.     By 
Theorem 4,   a safe permutation,  say    IT,     exists. 
Now  assume  that a loop exists,  say 

Pi P2 Pk 
P' 
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By relation (2) , P| must precede P*  in TT for 
j e {i+1, ..., k} and Pk must precede P^ since 
P' •*• P'.  So we have that both k   1 

P'  precedes P'  in TT and 

P/ precedes ?l    in TT 

which is impossible.  Therefore, no loops exist. 

Corollary 2: 

Proof: 

Assume that the next action of each P^ is to 
increase W^ to Vfc.  Then a safe permutation exists 
if and only if the set P_ is loop-free. 

Follows from Theorems A and 6. 

Theorem 7 A safe permutation of P_ exists if and only if 
P_ is loop-free. 

Proof: Assume that a safe permutation exists, say TT. 

Now assume that a loop exists, say 

PI P' 2 
pi _>. p» 
*k  r 

for 
in 

By relation (2) , P| must precede Pi  in TT 

j £ {i+1 k}.  Also, P£ must precede P{ 
TT since P£ •»• Pj_.  So we have that both 

P{  precedes P'  in TT and 1 k 

P'  precedes Pi  in  TT 

which is impossible.  Therefore, no loops exist. 
Conversely, assume the set is loop-free.  Then 
there exists some process, say Pj, which is not 
blocked by any other process. Let Kj = {P^ : i ^ 
No loop exists in K^; hence, there exists some 
process, say ?2>     i-n ^1 which is not blocked by 
any other process in K^.  Continuing inductively, 
we can construct a safe permutation. 

1}. 

Theorem 8 The assertion "the situation is safe if and only if 
a safe permutation of the processes exists" is false. 
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Proof: The proof is by counterexample.  Let P_ = {P-^, P2}. 
Suppose that at moment t = t0,  the situation is 
safe while ?^  •+ P2 and P2 •*• P]_.  To show that 
this is possible, we give a representation of 
W]_» W2, V]_,  and V2 at time t0 and a list of 
actions for  P^  and ?2    which show that  P^ 
reaches some moment t^ > t0 at which it is not 
potentially blocked by any other process.  Let 
W]_, W2, Vj_,  and V2 be as follows: 

(W,) 

(V.) (V.J 

(W, ) 

The next actions for P are: 

t + 1: P,  reduces W,  to the empty set 
o 1 1 

t +2: P„  increases W„  to V„ 
o 2 2      2 

t +3: P„  reduces W„  to the empty set 0 2 2 

t +4: P,  increases W,  to V, 
o 1 11 

t +5: P_  finishes 
0 2 

t +6: P-  finishes 
o 1 

15 



t0 + 1, P2 is not blocked by any other At time 
process.  At time 
any other process. Thus, the processes are able to 
complete their actions without conflict or deadlock. 

to + 3, ?i    is not blocked by 

Yet, no safe permutation exists at time t. There 
are two permutations, neither of which satisfies 
the relation (2). 

Corollary 3:     The assertion "the situation is safe if and only if 
the set of processes is loop-free" is false. 

Algorithm g Algorithm a is given, whereby a safe permutation 
may be chosen.  Assume the situation is safe and 
that a safe permutation exists at moment  t = t0. 
Further, suppose that process P^ wishes to change 
its state.  Then, pretend that P^ 
its state so that we are at moment 

has  so changed 
t„ + 1. To 

find a safe permutation, proceed as follows: Look 
for any process for which relation (2) holds; i.e., 
suppose we pick P^,  then 

i ^ ?i for j e {2, ...» n}. 

Among the remaining processes, pick any process 
for which relation (2) holds and designate it P^. 
Continue in this way.  If, after k steps of this 
procedure, we are unable to find a next qualifying 
process, then we may stop looking for a safe permu- 
tation since none exists.  We prove the last asser- 
tion in the form of: 

Theorem 9 The algorithm, a, decides uniquely whether or not a 
safe permutation exists. 

Proof: Suppose that after k steps through a there is 
no next qualifying process.  That is, we have con- 
structed partial permutation TTQ = Pj, P^, ..., P£. 
Then, there are at least two processes in P_ which 
do not appear in T0,  since otherwise we should 
have succeeded in finding a safe permutation.  For 
this set of processes, which we designate as P_' , 
there is no process which is not potentially blocked 
by any other in the set, since if there were, we 
should have succeeded in getting to the k + 1 step 
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of a.  Moreover, by Theorem 7, a loop exists in 
P_' ; hence, a loop exists in P_.  Therefore, no 
arrangement of the processes can satisfy relation 
(2); i.e., there is no safe permutation. 

Theorem 10       Let a safe permutation exist at moment tQ.  If, in 
the application of algorithm a to determine 
whether or not a safe permutation exists at  t0 + 1 
if we allow P^ its next action, it turns out that 
Pk is chosen, so that we have a partial permutation 
pl» p2» •••» Pk f°r which relation (2) holds (i.e., 
for each j e {1, 2, .... k} P± -/-> Pj  for 
i E (ji j+l» •••» n},  then a safe permutation exists 
at t0 + 1 if we allow P^ its next action. 

Proof; Assume we have arrived at partial permutation 

7T0 = P]_, P2» • • • » Pk* 

At time t0 there were no loops since a safe per- 
mutation existed.  Assume that there is no safe 
permutation at tQ + 1.  Then, by Theorem 7, a loop 
exists in the set P_' = P - {Pj^, P2, ..., PjJ. 
Since P^ alone has been assumed to cause time to 
move from t0 to t0 +1,  its action must have 
generated the loop in P_'.  But this is impossible 
since TT0 guarantees that P^ is not blocked by 
any process in P_'.  Thus, our assumption that no 
safe permutation exists at t0 + 1 leads to con- 
tradiction. 

Let  (P, J))  denote a system, where P is a set of processes 
(Pi, P2 P11)  aru* D is a data base  (S, R),  on which we 
impose the conditions: 

1) the processes obey the rules 1 through 3; 

2) the system, during a run, will allow an action by P e P_ 
only if the resulting situation is safe as determined by 
algorithm a; 

3) in case a process may not take its next action, it is 
stopped in its processing; it is allowed to proceed at 
some subsequent moment only if 2) is satisfied; the decision 
to try to restart a suspended process may be determined by 
any method—it must only be guaranteed that the effort to 
restart will be made within a finite amount of time. 
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Then  (P, D)  is a system of processes which harmoniously cooperate 
in the processing of a common set of data.  This is stated in the 
form of: 

Theorem 11 The processes of the system 
harmoniously. 

(P, D)  cooperate 

Proof: It is clear from Rule 2, Theorem 3, Corollary 1, 
and conditions 1) and 2) that conflict and deadlock 
do not occur during a run of the system (P_, D) 
and that at each moment during a run of the system 
some process may take its next action.  Since the 
set P_ is finite and processes which have finished 
do not become engaged again and since condition 3) 
guarantees that a suspended process will get another 
chance to continue processing, every process may 
get another chance to continue processing, every 
process may get access to all elements of S which 
it had claimed and will finish in a finite amount 
of time.  Thus,  (P_, D)  is a system of harmoniously 
cooperating processes operating on a common set of 
data. 
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SECTION III 

THE MODEL APPLIED TO A SET OF COBOL PROGRAMS 

INTRODUCTION 

The abstract model of Section II can be realized in a variety of 
ways.  We present here a specific description of a realization and 
restate the material of Section II in prose form, wherein the reader's 
intuitive notions replace the formalisms and proofs of the previous 
section. 

STRUCTURE OF THE DATA 

The abstract model of a data base D = (S, R)  is interpreted 
as follows: 

Let the elements of S = {a, b, c, ...,z}  represent 
files in the COBOL sense.  Let the relation R represent 
ordinary identity.  Thus,  a R b means a = b; i.e.,  a and 
b are the same file.  Then we have the simple result that 
subsets T and U are comparable if, in the ordinary set- 
theoretic sense,  TO U j  <j>;  this means simply that T and 
U both include at least one file in common.  For example, if 
T = {a, b, c}  and U = {c, d, e}  then T *-*•  U since the 
file c is a member of both T and U. 

COOPERATING PROGRAMS 

We replace the term "process" with the term "COBOL object pro- 
gram."  Our consideration now turns to the cooperation of a finite 
set of COBOL programs operating concurrently on the data base 
D = (S, =)  described above.  The same constraints on the COBOL pro- 
grams apply as were applied to the abstract processes:  in particular, 
each COBOL program takes a finite number of actions so that it is 
guaranteed that a program, once begun, will terminate its processing. 
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CONFLICT AND DEADLOCK 

Let C  = (C^, C2, C3, ..., Cn) be a finite set of COBOL programs 
operating on p_. Let each C^ have associated with it some subset 
W^ of S at each moment during its run. W^ contains all the files 
in S which C±    is currently processing in any way: C^ may be 
reading, creating, updating the files in W^. 

We may now describe conflict between two COBOL programs of C_ 
quite easily;  C-^ and Cj  conflict if both of them are currently pro- 
cessing at least one file in common.  For example, while C-^ is reading 
file e,  Cj may be updating it - this is conflict.  Conflict now 
has a real meaning:  clearly, the file read by C^ may be an unpre- 
dictable mixture of the old file e (before Cj did its updating) 
and the new file e (after Cj did its updating), so that the 
information delivered to Ci is inconsistent.  In practice, conflict 
may be even more severe than this.  If both programs are updating 
the same random file and affecting the same index to that file, con- 
tamination may even affect the system which runs the programs so that 
the data base gets beyond repair. 

Suppose we make the rule: 

"C^ may not change its associated W-^ if the change would 
cause it to conflict with some other COBOL program." 

This provides protection from conflict but allows deadlock to occur, 
as we show in the following example: 

Suppose that C^ is processing files a, b, and c 
and that C2 is processing files d, e,  and f.  Clearly 
C^ and C2 are not in conflict. Now suppose that program 
Cj.,  in order to complete its run, must have access to file 
d while not relinquishing its hold on a, b,  and c and 
that program C2 similarly must have access to file a. 
When program C^ asks for access to d,  the request must 
be denied, for to grant it would cause C^  to conflict 
with  C2,  so that  C^ must wait for file d  to be released. 
Similarly,  C2's  request for file a must be denied so 
that it waits also.  We have now a deadlock,  C^ waiting 
for C2 and vice versa so that neither will ever finish. 

We certainly must avoid such a situation; at the same time, 
however, we do not want to impose rules on the programs which are so 
restrictive that we effectively would eliminate shared use of the 
data base. 
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To this end, we associate with each COBOL program another subset 
of the files in the data base.  This subset, which we have denoted by 
V,  tells the system in which the programs run what files may at some 
time be simultaneously needed by each program during its run.  For 
example, if for C]_, we have V^ = (a, b, d, f, hi,  this means that 
during a run of the COBOL program C^ it may simultaneously have 
open all the files a, b, d, f,  and h.  On the other hand, it may not 
have all the declared files open simultaneously; that is, it may do 
something like the following: 

PROCEDURE DIVISION. 

OPEN a. 

OPEN b, 

OPEN d. 

CLOSE a. 

OPEN f. 

CLOSE b. 

OPEN h. 

CLOSE d. 
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CLOSE f. 

CLOSE h. 

<end>. 

so that at no time does it have all the files in V open at the same 
time.  However, such information is not supplied.  We assume the 
worst case - that all the files may be open simultaneously. 

How does the subset V become established?  In COBOL the subset 
V is implicitly identified in the INPUT-OUTPUT SECTION.  section, 
FILE-CONTROL,  paragraph, wherein each file to be used by the program 
is named in a SELECT statement.  The compiler need only make an 
explicit V-list declaration a part of the object program, so that 
V-L for Ci may be established by the system before C^ takes its 
first action. 

The subset W^ associated with a C^ is dynamically maintained 
by the system in which C^ runs.  W^ at any moment during a run of 
Ci is a list of all the files which C-^ has open (i.e., files for 
which Ci has issued an OPEN but not a CLOSE). 

Note the following important restraint imposed by the model of , 
Section I:  The COBOL programs are not allowed to use the COBOL LINK 
statement since this might, in effect, increase the associated V. 
This is a particular form of the general constraint that all the 
programs in £ are independent of each other except for the sharing 
of D. 

Finally, both Wi and V^ may change during a run of C^ with 
the restrictions: 

(i)  W± C V±; 

(ii)  if V.  is changed to V',  then V' C V . 

A generic usage to be understood to mean a statement set appropriate 
to the specific implementation of COBOL; e.g., ENTER LINKAGE 

CALL entryname 
ENTER COBOL 
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(i) means that  C^ may not OPEN a file which has not been declared 
to be a member of V^;  (ii) means that C^ may reduce the set of 
files on which it has established a claim but may not add files to 
its claim list (i.e. , the list of files given by its associated V) 
during a run. 

POTENTIAL BLOCKING 

With the establishment of a W and a V for each program, we 
have made it possible for the system to detect impending danger of 
conflict and thereby to avoid deadlock. 

Consider an example.  Suppose for COBOL program C-,     we have 
Vj_ = (a, b, c)  and for COBOL program C2 we have V2 = {c, d, e}. 
Let Wi = {c)  and W2 = (d).  We can see the imminent danger here, 
for C2's next action may be to request the use of c.  Notice that 
W^ H V2 f  <t>:  that is,  c is a member of both W^ and V2.  In 
such a case, we say that Ci is potentially blocking C2,  for 
should C2  request  c,  the request would be denied and C2 would 
in fact be blocked in its attempt to continue. This, in itself, is 
not disastrous; but it is important to know that C^ is potentially 
blocking C2 for if C2 were also potentially blocking C]_, then 
the danger of deadlock would exist.  Consider the example: 

V = {a, b, c} 

W = (b) 

V2 = {b, c, d} 

W2 = {c} 

(our notation which says  C^  is potentially blocking C2) 
b  is in both W^ and V2.  C2 "*" Ci because c is in both 
V]_.  If the next actions of  C^ and C2  are to request use 

because 
W2  and 
of  c and b,  respectively, then C^ and C2 are in a deadly 
embrace (deadlocked).  Notice also that at the moment we have a loop 
of potential blocking: 

Also,  C and are not in conflict; w n w2 - <f. 
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THE SAFE SITUATION 

We now explain the safe situation in terms of C_ and J).  The 
programs of C^    are in a safe situation at moment t if every program 
can have simultaneous access to all of the files in its V-list within 
a finite amount of time. This can be said more precisely in terms of 
our notion of potential blocking: The programs are in a safe situa- 
tion at moment t if for each program C^ the moment  tfc > t can 
be reached at which it is true that Cfc is not potentially blocked 
by any other program; at the moment  t^, no process is using any of 
the files in Cfc's V-list so that Ck can get access to all the 
files it had claimed and can finish its processing. 

RULES OF COOPERATION 

The rules of cooperation given in Section I are restated in 
terms of C_ and D. 

Rule 1:  Each COBOL program C^ begins operation with an established 
list, V±,    of files which it may require and an associated 
list, Wi, of files which it has open; initially, W^ is 
empty. 

Rule 2:  A COBOL program may not open a file if the file is already 
being used by some other COBOL program. 

Rule 3: With respect to the files which a program C is using or may 
use, the program may change its state in one of three ways: 

(1) C finishes, making V and W empty; 

(2) C changes W by opening or closing a file, but only 
a file which was declared in its V-list; 

(3) C changes V by deleting entries; this means it will 
never in the course of the rest of its run require the 
files whose names have been deleted from its V-list. 

"A mechanism for reducing V-list does not currently exist in COBOL; 
a new statement set would be required to implement this capability. 
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With respect to the file actions indicated, we must retain the 
condition that only one program at a time takes an action; however, 
as for other activity we do not care if many programs take actions 
simultaneously as might be the case in a multiprocessor environment. 
With respect to Rule 2: We do not expect the COBOL program to decide 
whether or not it can safely open a file; rather, when the program's 
OPEN statement is encountered, the system must inspect the situation 
and decide whether or not to allow the program to open the file.  If 
it is decided that the program cannot open the file, the system must 
suspend the program and restart it when the situation clears up.  One 
way to trigger the restart is to have the system inspect a queue of 
suspended programs to find a candidate for restart every time a file 
is closed. 

HARMONIOUS COOPERATION IN (C, D) 

As was suggested in the previous discussion, the system in which 
(C, D)  is embedded becomes involved with the management of the pro- 
grams in C.  In particular, the system must take cognizance of every 
action having to do with the declaration, opening, and closing of 
files; in addition, the system must maintain a queue of suspended 
programs—i.e., those programs which have attempted to open a file 
but which have been denied access temporarily. 

The theorems of the previous section give us a method whereby 
the system may determine whether or not it is safe to allow a particu- 
lar OPEN to be executed.  The method was designated algorithm a,     and 
it was shown in Theorem 9 that the algorithm determines uniquely 
whether or not a safe sequence of the programs exists.  A safe sequence, 
say 

Cl» C2' ••" Cn 

of programs in C    means that 

1) for Ci it is true that no other program currently has open 
any file in C 's V-list; 

2) for C2 it is true that none of the programs C3, C4, ..., Cn 
has open any file in its V-list; 

3) in general, for Ci it is true that no other program Cj 
where i < j £ n has open any file in Ci's V-list. 
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Algorithm a shows how the system may construct a safe sequence: 
the system picks any program which can qualify as a Ci in the example 
above, then looks for any C2,  and so forth.  In addition, Theorem 
10 shows that a computational shortcut exists, so that the system 
need only construct a sequence up to the point where it contains the 
program which is requesting the opening of a file. 

Finally, Theorem 7, which shows that a safe sequence exists if 
and only if C    is loop-free, means that an alternative algorithm 
for deciding safety in terms of a directed graph exists. 

DISCUSSION OF THE SYSTEM (C, D) 

The system (C, D)  has the characteristic that the programs 
may operate concurrently on a data base while it is guaranteed that 
conflict and deadlock will not occur; this means that no program will 
ever get stuck in its processing and that the data base will never 
suffer loss of integrity. 

However, we should expect that for most multi-user systems, the 
system (C, D) will be unacceptable on a number of counts.  The 
system  (C, ])) 

1) makes no provision for a dynamically changing set C_:  that 
is, it does not allow that programs (processes) may enter 
and leave the system from time to time; 

2) makes no provision for the special case wherein a set of 
programs could safely concurrently read the same file; 

3) does not coordinate the data sharing with resource sharing 
(another source of conflict and deadlock); 

4) uses the file as a unit of lock-out:  the file might prove 
too gross a unit for many applications; 

5) makes no provision for the user to make strategy decisions 
which could optimize system use and performance for a given 
application. 

Undoubtedly, the reader can add to this brief list.  Nevertheless, 
we have so far achieved the result that we can define a system which 
behaves in a pre-determined way to avoid the problems of conflict and 
deadlock in concurrent use of a data base.  We have now to refine, 
extend, or otherwise change our model as we attempt to eliminate those 
characteristics of the system which are undesirable. 
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SECTION IV 

EXTENSION OF THE MODEL 

INTRODUCTION 

In this section the model of Section I is extended to distinguish 
read-only use from read-write use of elements of S and to allow a 
dynamically changing set P_. 

EXTENSION TO ALLOW INCREASED SHARING FOR READ-ONLY USE 

Conflict and Deadlock 

Let P_ = {P^, P2» •••» Pn^  De a set °f processes operating on 
D.  Let each Pi have associated with it a subset R±    of S  at 
each moment of its engagement.  The subset R±    is to be understood 
to contain all elements of S which Pi is currently using but not 
changing:  that is,  r E R^  guarantees that  Pi  does not change  r 
in any way—thus,  R^  represents a read-only set of elements with 
respect to Pi  (we allow that some Pfc may wish to claim an element 
of R±    for read-write use). With each Pi we also associate a sub- 
set Qi which establishes a bound for Ri,  just as Vi establishes 
a bound for Pi's associated \H±. 

We re-interpret the subset Wi to include only those elements 
of S which Pi may change during its engagement. 

We have: 

(i)  W± C V± 

(ii)  if V  is changed to V'   then V' C V. 

(iii)  R± c Q± 

(iv)  if Qi is changed to Q^,  then Qj C Q^ and we impose, 
additionally, 

(v)  V. 0 Q = <f>. 

Note that (v) implies R fl W = <{>. 
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definition       P.  conflicts with P  if 

R. «-+ W ,  or 

W± -*-> R ,  or 

W. ++ W.. 
i    J 

Thus, we now allow Ri ++ Rj  during a run of P-^ 
and P . 

notation Let  R^ U Wi be denoted by  RUWis  and 

Q. u V.  be denoted by QUV.. 

Potential Blocking 

definition       P. •*•  P.  if i +  j  and 
        i   J 

R. «-+ V.,  or 

W\ •«-> QUV. 

The Safe Situation 

The definition of the safe situation is the same as in Section I. 

Rules of Cooperation 

The rules of cooperation are restated as follows: 

Rule 1:  Each process  P begins operation with a bound  V on its 
W and a bound Q on its  R,  with R = W • <f>. 

Rule 2:  A process P may not change its associated R or W if 
the change would cause it to conflict with some other process. 

Rule 3:  At each moment of time, one of the processes, say P,  takes 
an action, changing its state in one of four ways: 

(1) P  finishes, reducing  R, W, Q,  and V  to the empty set, 

(2) P  changes R or W,  subject to R£Q and W C V. 

(3) P changes Q to Q'  or V to V',  subject to 
Q' CQ and V' C V. 

(4) R, W, Q,  and V remain unchanged. 
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Harmonious Cooperation in (P, f£) 

Theorem 12 Let P change its state according to Rule 3.  If in 
the new state Pj_ -> P,  then this was true in the 
old state as well. 

Proof: Pi •* P means %-«->- V  or 
Wi *-+• QUV' , where V'  and 

the bounds for P after its state change. 
Q' are 

Suppose that  R^ •*-*•  V' ;  then 3 r e Ri and 
such that 
that R± 

'  e   V 
- v'.  But v' E V since V c V so 
and Pf •+ P  in the old state as well, 

Suppose that Wi -*->- QUV';  then 3 w E Wi  and 
s' E QUV'  such that w +-+ s *.  Since Q* fl V = <\>, 
we have s1 E Q1  or s' E V'  but not both.  If 
s' E Q',  then s' E Q since Q' c Q and Ri -«-> Q. 
If s' E V',  then s' e V since V' c V and 
Ri +-*•  V.  In either case,  Ri «->• QUV 
Pi •* P in the old state as well. 

so that 

Theorem 13 Assume that the next action of each Pk is to 
increase Rk to Qk and Wk to V^  (i.e., make 
Rk = Qk and W^ = V^).  If the set of processes is 
in a safe situation at this moment, then there 
exists some Pj  which is not potentially blocked 
by any other process. 

Proof: Assume the theorem is false, 
j 3 i(j)  such that P±(  •> 

Then for every 
P.  at this moment, 
J 

i(j) 
implies  R 

Suppose Ri(j) 
we have Ri(j) Wn 

i(j) 
V 
j 

or w 
i(J) 

QUV. 

then if Pi makes Wj = 'J' 
but this is not allowed by Rule 2, 

Suppose that Wi(j) 
or Wi(j) Vi If 
Wj = Vj ,  then either Wi(j) •*-> 
neither of which is allowed by 

i- QUVj ;  then either Wi(j) 
Pj  makes Rj = Qj  and 

Qj 

Ri or w Kj) W J ' 
Rule 2.  Therefore, 

we have that  Pj  may not take its next action because 
of Rule 2.  But this is true for all the processes. 
Since no process may take its next action, there is 
no time tj  at which Pj  is not potentially blocked 
(i.e., the situation is not safe). 
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The rest of the theorems, corollaries, and lemmas of Section I are 
also valid here—they need not be proved since the proofs are not 
affected by the changes we have made in our definitions and rules. 

Discussion of (P, Jj) 

If we allow that some elements of S be identified as read-only 
elements, then we may relax the restrictions on the processes.  In 
particular, it is not necessary to know in advance that a read-only 
element of S may be required by a process, and a process's request 
for a read-only element may always be honored without fear of deadlock; 
the latter statements are contingent, of course, on our allowance that 
for any i and j , i ^ j , R± •*-*•  Rj  is always allowed. 

In the model we have defined, the more difficult problem of read- 
only use of an element of S has been considered; in the model, 
"read-only" is treated as a property of a process rather than as a 
property of an element of S. 

EXTENSION TO ALLOW A DYNAMICALLY CHANGING SET P 

Introduction 

In Section I we considered the set  P^ to be a fixed finite set 
of processes.  Harmonious cooperation of the processes was explored 
for a single run of the system  (P, D)  in the sense that 

a) all processes in P_ are in homing position to start (W = R = <|>) ; 

b) when a process takes the action "finish, reducing W, R, V, 
and W to the empty set," it may not begin another run until 
all other processes have also finished; and 

c) when all the processes have finished, the system (P, D)  is 
again in homing position, at which time another run of the 
system can begin. 

In this section we allow for entering and leaving processes in 
the set P. 
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Cooperating Processes 

We allow for entering and leaving of processes in the set _P in 
the sense that 

a) a process, having finished, may leave the system; 

b) a process may enter the system at a moment subsequent to the 
beginning of system operation and may become engaged after 
entering; and 

c) a process, having finished, may become engaged again at any 
subsequent moment. 

We retain the conditions: 

1) V_,     at any moment, is a finite set; and 

2) P e P is a process in the sense of Section I. 

We relax the condition that the system returns to homing position 
after a finite amount of time (makes a single run); rather, we have 
that the system begins operation at an initial state (all P e P_ in 
initial state) and runs for an indefinite time. 

Let us extend the meaning of the system  (P^, D)  as above and 
denote the extended system by  (P, D, Ei).  Our principal objective 
will be to prove a theorem for  (P_, jD, Ei)  analogous to Theorem 11 
for the system  (P, D) :  that is, we want to show that every process 
gets to finish its task within a finite amount of time without con- 
flicting with other processes.  We cannot prove such a theorem at 
the moment for by E^ we have introduced the possibility of permanent 
blocking; it becomes necessary to examine more thoroughly the actions 
the system must or may take when a process is suspended or is to be 
restarted. 

Permanent Blocking 

Permanent blocking is a condition of a process wherein it is 
blocked by the states of the system for an indefinite time from 
acquiring access to what it had claimed.  While the system (P_, J), E^) 
may remain safe from deadlock and may prevent processes from conflicting, 
the safe situation does not exist if some process is permanently blocked. 
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Permanent blocking arises out of the extension E]_,  as is seen 
in the following example.  Suppose we have for P_ = {Pi, P2, P3}  that 
all three processes make an indefinite number of runs and that for each 
run Pi has VI = {a}, P2 has V2 = {b},  and P3 has V3 = {a, b}. 
Then the system may get into the situation where its allocation states 
permanently block P3 as follows: 

aQ E W1 = {a}, W2 = <fr, W3 = <J> 

al ~  Wl = {a}' W2 = {b}' W3 = * 

a2 = W1 = <j>, W2 = {b}, W3 = 4> 

a3  E lfi1 =  {a},  W2 =  {b},  W3 = <t> 

a4  E  V 

P3 is permanently blocked if it has requested access to a and b, 
since the request can never be granted without causing conflict. 
Notice that in the situation described, a safe situation does not 
exist in the system although a safe permutation exists at each moment. 
We have, then, that a safe permutation is not sufficient to guarantee 
the safe situation. 

Suspended Processes and the Scheduler 

In order to deal with the problem of permanent blocking, we 
formalize the notion of suspension of a process. 

Let £ - {Pi, P2, ..., P^}, k< n, 

be the set of suspended processes at any moment in the system 
(P, D, E]_) . 

We postulate the existence of a scheduler in  (P, D, Ei)  which 
performs management services for the processes.  The scheduler 

1) checks safety of the situation; all attempts to change W 
(and  R) are made through the scheduler; 

2) suspends a process when a request for a data element (change 
to W or R) cannot be granted; and 

3) restarts a process which has been suspended. 
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With respect to 1) 

With respect to 2) 

The scheduler uses algorithm a  (see page 16) 

Let £={Pi, ?2>   •••» PfcJ  at moment 
at moment  t0 + 1 some process, say 
be suspended, then 5. = {P{» P^> •••> 
at moment tG + 1, where P^+i = P-£. 
other words, the queue is ordered by arrival; a 
new arrival goes to the end of the queue. 

to-  If 
P-L,  must 

In 

With respect to 3) 

In addition, we assume that the scheduler also 
remembers a process's request when it suspends 
a process. 

We have not said under what conditions a process 
will be restarted, whether or not a priority is 
associated with a process, or how the scheduler 
goes about deciding that conditions are right for 
restart of a particular process.  In fact, we 
will have to show that, by some scheduling 
algorithm, a process will remain in (£ for only 
a finite time (does not become permanently 
blocked). 

Scheduling by Expediency 

We have used an implied scheduling strategy heretofore, as in 
the recent example of permanent blocking wherein P3 never gets 
access to what it had claimed  (V = {a, b}).  We now state a strategy 
explicitly in order to show the characteristic of permanent blocking. 

Strategy: 

1) every request for a state change involving S is checked 
to see that it satisfies Rule 2 and Rule 3 (see page 28) and 
that granting the request would result in a safe permutation; 

2) whenever such a state change is requested by a running pro- 
cess, the scheduler tries first to honor the request of some 
P  in 4; 

3) Q is searched in order of entry of the processes; 

4) if a P E ^ is found whose request may safely (by 1) be 
granted, then P is removed from ^,  its request is granted, 
and it may be allowed to run; the running process which 
requested the state change enters Q; and 

33 



5)  if £ is empty or no P e £ maY safely be granted its 
request, then the scheduler proceeds as usual (i.e., if the 
request may safely (by 1) be granted, then the request is 
honored; otherwise, the requesting P enters (£ and some 
other process is allowed its next action). 

(3) The strategy uses the expediency condition,   which is to grant 
a request if the grant is safe as defined above.  The strategy does 
not prevent permanent blocking; the example given recently still holds. 

In the example, P3 is permanently blocked because it can never 
simultaneously get access to both a and b.  This suggests that the 
situation might be improved if we impose the condition that a process 
may request only one element of S per request—this would impose 
upon the process the burden of collecting all the elements of S it 
needs in order to perform some processing by requesting them one at 
a time. 

Let us examine the example given previously and then the system 
in general with this condition imposed.  We had, in the example, 

aQ H \J1  = {a}, W2 = * , W3 = <J> 

a± =  W1 = {a}, W2 = {b}, W3 - «fr 

a2 = Wx = 41 , W2 = {b}, W3 = * 

a3 = Wx = {a}, W2 = {b}, W3 = <j> 

a4 S V 

Suppose now that P3 requests a,  then requests b,  then performs 
its processing, and finally releases a and b and terminates. 
Then, with the scheduling strategy we have defined, a possible alloca- 
tion sequence is: 

a0 5 Wl = {a}' W2 = * * W3 = * 

a1  = V1  = {a}, W2 = {b}, W3 = <J> 

a2 = V1  = <f>, W2 = {b}, W3 = * 

a3 i W = <f , W2 = {b}, W3 = {a} 

a4 E V1  = 0, W2 = <j>, W3 = {a} 

a5 = Wx = *, W2 = +, W3 = {a, b} 

ag = V1  - *, W2 - $, W3 - «j) 

a? EaQ 
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Thus, no process is permanently blocked in this example.  However, 
we may construct an example in which P3 is permanently blocked as 
follows.  Suppose we have that for each run 

?±    has V = {a, c}; 

P„ has V„ = {b, c}; and 

P_ has V_ = {a, b, c}. 

If it happens that  Pj_  requests only  a during its run,  P2  requests 
only b  during its run, and  P3 happens to request  c  first (before 
a and b), then the system's allocation states may permanently block 
P3 as follows: 

aQ =  Wx = {a}, W2 = *, W3 = <f> 

a± = U1  = {a}, W2 = {b}, W3 = <f> 

a2 =  Wx = $, W2 = {b}, W3 - <j> 

a3 =  Wx = {a}, W2 = {b}, W3 = 41 

a4 " V 
In fact, these allocation states are precisely thos/e of the first ver- 
sion of this example.  At no time may P3 be granted its request for 
c because we would have either 

Px - P3 - Px 
or 

P2 * P3 * P2" 

The characteristic of permanent blocking is that a process is 
continually held up because advance knowledge of the constitution of 
the set P_ is not available and no special action has been taken to 
force an allocation state which will free the process from suspension. 

We will next consider how the scheduler may take special action 
to ensure that permanent blocking does not occur. 
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Scheduling by Eventuality 

We will consider a scheduling strategy wherein the eventuality 
condition^) is imposed—that is, we will allow the scheduler to 
block a safe request for a finite time in order to force an allocation 
state which relieves permanent blocking. 

To this end, we define three additional sets; E_, T_, and B_. We 
will use 15 to denote the collection of running processes and T_ 
the collection of new processes entering the system, which have tem- 
porarily been blocked by the scheduler from starting.  A running process 
is one which has been engaged, has not finished the run for which it 
was engaged, and is not currently suspended because of a denied request. 
(Note that in a multiprogramming environment, a process in E^ may be 
suspended by scheduling action related to the multiprogramming, but 
we do not consider that here.)  T_ is the queue by which we will impose 
the eventuality condition.  B is a special set which will always 
either be empty or will contain exactly one element of P_. 

We have then, for every Pi e  JP, 1 <_ i _f_ n, Pi e E_ or P^ e ^ 
or P  e T or P e B. 

P e E_ means P.  is running. 

P. e (^ means P^  is suspended awaiting the grant of a request 
which had been denied. 

Pi e T means Pi has entered the system subsequent to a moment 
when the scheduler decided to force an allocation state to 
relieve permanent blocking. 

Pi E B means Pi was in danger of being permanently blocked 
and is now being given special attention by the scheduler. 

Define the function q as follows: 

q(X) =0  if X = <f> 

1  if XMi 

where X is a variable which may have the values P_, E_, (£, T, B_. 
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We now state a scheduling strategy, wherein we retain the con- 
dition that only one element of S per request be allowed.  Strategy 
a: 

1) Every request for a state change involving S  is checked to 
see that it satisfies Rule 2 and Rule 3 and that granting of 
the request would result in the existence of a safe permutation 
of the processes; when these conditions are satisfied, we say 
that the request may safely be granted. 

2) For P E 15,  if the request of P may safely be granted, 
then it is granted and P remains in E_;  if the request of 
P may not safely be granted, then the grant is not made and 
P leaves E_ and enters (£. 

3) Whenever an element of S is released by a process, the 
scheduler performs the algorithm given in Figure 1 (next page). 

4) Whenever a process say Pa,  becomes initially engaged, the 
scheduler performs the following algorithm: 

<START> 

q (1) 

THEN 

PUT Ptt IN T 

ELSE PUT PQ IN £ 

f 

FINISH 

Strategy a may be explained by intuitive appeal.  When a process 
Pq in (£ is found which had requested an element of S which is 
now available but the request cannot now safely be granted, the 
scheduler blocks new processes from acquiring elements of S  in 
order to force a sequence of allocations which will result in the 
removal of Pq  from ^.  During the time that new processes are 
being held back, the other processes in E U ^ are allowed to pro- 
ceed under the expediency condition—in other words, processes in 
^ are not prevented from proceeding whenever they can. 
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IF 

(START) 

4 <£)  • I THEN- •IF REQUEST OF   Pk«     B    IS   SAFE 

ELSE ELSE THEN 

IF 

IF q(Q) =   I ELSE 

THEN 

SEARCH 0  IN   ORDER OF 

ENTRY,  GRANTING  ANY 

REQUESTS WHICH ARE NOW 

SAFE; ANY P«   £ WHICH 

IS GRANTED  ITS   REQUEST 

IS  MOVED FROM Q TO E 

q(Q) •   I ELSE 

THEN 

SEARCH Q  IN ORDER OF ENTRY 

LOOKING FOR FIRST P, « Q FOR 

WHICH IT IS TRUE THAT THE 

ELEMENT REQUESTED BY P, IS 

AVAILABLE AND GRANT OF 

REQUEST TO P, IS NOT SAFE 

8 

GRANT REOUEST OF Pk ; 

MOVE  P.   FROM B TO E 
D — — 

IF q(T) ELSE 

THEN 

MOVE ALL  P« .1  FROM 

ITOE 

•FINISH' 

THEN 

IF NO  SUCH   P     EXISTS   IN _Q_ 

ELSE 

i 
MOVE   P,    FROM OTOB 

Figure  1.     Scheduler Algorithm:     Release of  an Element 
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Harmonious Cooperation in CEt H, El) 

Let  (P, D, Ei)  be a system wherein strategy a  is used by the 
scheduler.  Then  (P, D, E^)  is a system of processes which harmoniously 
cooperate in the processing of a common set of data.  We show this in 
the form of 

Theorem 14       The processes of the system (P, I), E^)  cooperate 
harmoniously. 

Proof: It is clear that conflict and deadlock do not occur 
and that at each moment during the operation of the 
system some process may take its next action.  We 
have only to show that for any Pq E £, P„ remains 
in ^ for a finite amount of time.  First, we show 
that for P[ e (£, ?[    remains in £ for a finite 
time.  P[ E ^ means that at some moment P| requested 
s' e S but was denied grant and placed in (£. 
Either s'  is in use by some process, or it is 
available when we inspect the situation, say at 
moment t\.     If s'  is in use at tJ,  then within 
a finite time it becomes available, say at moment 
ti+k*  In anY case, within a finite time the 
scheduler will find the condition P| e £, Pj[ had 
requested s',  and s'  is available.  If it is 
safe to grant the request of P],  then Pj leaves 
^ to enter E_.     If it is not safe, then the 
scheduler inhibits engagement of new processes, so 
that Pj leaves (£ within a finite time, as has 
previously been proved in Section I. 

When ?2_    leaves (£, P£ becomes P{, etc.  Thus, 
for any Pq e ^, Pq remains in Q    for a finite 
amount of time.  Thus,  (P_, D, E^)  is a system of 
harmoniously cooperating processes operating on a 
common set of data. 
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SECTION V 

A REPRESENTATION OF THE SYSTEM (P, D, E ) 

INTRODUCTION 

In this section we develop a representation of  (P, p_, E^)  which 

a) shows the states of the system and the possible transitions 
among the states, 

b) describes the strategy, a,  for prevention of permanent 
blocking, and 

c) constitutes a partial specification for a simulation of the 
system. 

STATES OF A PROCESS IN (P, D, E ) 

We describe the progress of a process through the system (P, D, E ). 
For an arbitrary process,  Pa, we define a set of comprehensive, 
mutually exclusive states as follows: 

P E : P is attempting to enter the system. 
a    a 

P E : P e E-i.e., P„ is running (subject to temporary suspen- 
sion due to multiprogramming). 

p„2. : ^ e ^~i-e., Pa is suspended because a request for an 
element of S could not safely be granted;  P 
is waiting to get its request and continue. 

P B : P e B-i.e., P~  is getting the special attention of the 
scheduler, which is trying to force an allocation 
state which will cause the transition of P  into 
state P E. a 

a— 

P T : P e T-i.e.,  P„ is waiting to transition into state P E; 
this will happen as soon as B_ = <J> holds. 

P L : P  has terminated and leaves the system. 
a    a 

The description of the movement of PQ through the system and 
the relationships of its states are shown in Figure 2. 
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PN1 

Figure 2.  Transition Diagram for a Process in (P, U,  E.) 
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The description of Fig. 1 is in the form of a Petri net^ ' for the 
reason that the transitions are more explicit (than is usual in state 
machine representations).  We make the transitions explicit since 
most of the transitions of Pa are contingent on the holding of a 
set of propositions about the system in general:  for example, 
P T -»• P E is contingent on the truth of the proposition "B -4." 
a—   a- — 

In Fig. 3 we note the conditions which enable the transitions among 
the states of P . 

STATES AND BEHAVIOR OF THE SYSTEM (P, £, E ) 

A number of different notational schema for describing the states 
of the system, its behavior, and the relationships between states and 
actions in the system are possible.  Two formal systems are of parti- 
cular interest in this respect—Petri nets'^) and graph programs. (->) 
The author has found that the formalisms and intended semantics of 
these systems do not allow for the easy representation of states, 
state transitions, and algorithms in one descriptive notation.  On 
the one hand, a Petri net provides a convenient method for represen- 
tation of states and state transitions; on the other hand, a graph 
program is a convenient way to represent an algorithm. 

Hence, we develop in this subsection a specialized notational 
schema to represent both the states and the behavior of the system 
(P, D, E1). 

We define a function c as follows:  c(X) = number of elements 
in X» where X has the domain {P, E, £, B_, T}.  The relation 

c(P) = c(E) + c(.Q)  + c(B) + c(T) 

always holds in the system.  We define states of the system as follows: 

SI:  c(P) = 0 

S2:  c(E) > 0 and c(T) = c(£) = c(B) = 0 

S3:  c(E) > 0 and c(£) > 0  and  c(T) = c(B) =0 

S4:  c(E) > 0 and c(£) > 0 and c(B) = 1 and c(T) = 0 

S5:  c(E) > 0 and c(B) = 1 and c(QJ> = c(T) = 0 

S6:  c(E) > 0 and c(^) > 0  and  c(T) > 0  and  c(B_) = 1 

S7:  c(E) > 0 and c(T_) > 0 and c(B) = 1 and c(Oj = 0. 
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PN2 

[THE ELEMENT REQUESTED 
BY  Pa HAS   BECOME AVAILABLE 

BUT   CANNOT   SAFELY   BE 

GRANTED 

CEai>- 
>] 

(THE 

ELEMENT 

REQUESTED 

BY Pa 

CAN SAFELY 
BE  GRANTED] 

Figure  3. 

Transition Diagram for a Process  in  (P,  D,  E,)   Showing  Contingencies 
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SI through S7 are a set of alternatives for the system—i.e., 
one and only one state holds at any given moment.  The possible transi- 
tions among these states are shown in Fig. 4, which is annotated with 
contingency conditions for the transitions. 

We will show the behavior of the system in Fig. 5; explanation of 
the notational devices and some additional definitions are required 
first. 

Define the four actions: 

Al:  a process enters the system. 

A2:  a process requests loan of a claimed element of S. 

A3:  a process returns to the system an element of S it had 
borrowed. 

A4:  a process leaves the system. 

Define notation as follows: 

SXJ    :  denotes a state of the system, SX domain is Si 
through S7. 

+ denotes a transition with an accompanying action 
usually noted. 

:A :     :  denotes an action A1-A4. 
x 

C      :  used as a line connector; has no other meaning. 
x 

• I'll     :  denotes that one and only one of the multiple 
transitions will occur, depending on conditions 

¥ 
(to be noted). 

: when two or more arrows arrive at a transition, 
the transition occurs when and only when source 
conditions are all simultaneously satisfied. 
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PN3 

O 
n 
•n 
m 

i 

[Cl] : A  PROCESS   ENTERS  THE  SYSTEM. 

[C2]: C(E.)  REDUCES TO  ZERO. 

[C3J: A PROCESS  REQUEST IS DENIED   RESULTING IN C(Q) * 0. 

[C4J: AN ELEMENT OF S IS  RELEASED AND   C(Q)  REDUCES TO ZERO. 

[C5]: AN ELEMENT REQUESTED BY SOME   P#Q. IS   RELEASED  BUT 
CANNOT   SAFELY   BE GRANTED  TO  P. " 

[C6]: THE  ELEMENT   WANTED  BY   PcB   CAN   SAFELY  BE  GRANTED. 

Figure 4.     Transition Diagram for States  in   (P, JJ,  E^) 

45 



A4: 

in this example, when the system is in state S3, 
it will transition (either 1, 2, 3, or 4) 
depending on which action occurs; recall that in 
(P_, J), E-^)  one and only one of the actions A1-A4 
may occur at any moment. 

( ) 

t 
o 

statements or strings of symbols enclosed in 
parentheses denote actions taken by the system- 
the action symbols are defined below. 

has no meaning; is a shorthand notation for 

o 
I  ] statements or strings of symbols enclosed in 

brackets denote propositions about the system; 
these will be associated with transitions, a 
transition occurring only when its associated 
proposition is true. 

For example: 

Ic(2)=0] lc(£)*0] 

in this example, transition 1 occurs if Q =  <j> ; 
otherwise, transition 2 occurs, 
note, one of the two transitions must occur, but 
only one will. 

Function notations 

+X means add a member to the set 
is determined by context: 

X,  the member 

+X =* c(X) +• c(X) + 1 
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-X :  as for +X except remove instead of add a member: 

-X =>  c(X) *• c(X) - 1 

g(a)        : means make a loan or loans to the process  a 
or the processes in the set a for which the 
loan is safe. 

For example: 

g(P ) means grant the request (allocate the element of S)  to 
process P, . 

b 

g(^)  means grant the requests of any members of (J. for which 
the granting of the loan is safe, any such member is to 
leave ^ and enter IS, and the size of Q and _E are 
to change accordingly. 

Special notation: 

P  will denote an arbitrary process; when used in context, it 
indicates the process of the context; for example: 

g(P )  means grant the request of the process which has 
requested an element of  S. 

P  will denote that process P for which it is true that either 

P e Q,  the element s requested by P is available (in 
the sense that conflict would not exist if s were 
allocated to P), and the grant of s  to P is 
not safe, 

or P e B. 

S :  denotes the statement "grant of request is safe." 

NS :  denotes the statement "grant of request is not safe." 

R(P)        :  denotes "request of P." 

The compounded symbols R(P)S and R(P)NS have their obvious meanings— 
"grant of the request of P is safe" and "grant of the request of P is 
not safe", respectively. 
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Fig. 5, a description of the behavior of the system (P, D, E^), 
can now be presented.  Although it is equivalent to the description 
of the previous section, it has the distinct advantage over the 
previous description that it exhaustively shows the states of the 
system and all possible transitions in a compact form. 
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N4. DESCRIPTION OF SYSTEM (f.P.Ej) 
SHEET I OF 3 

Figure 5.  Description of the Behavior of the System (_P, D, E1) 
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N4. (CONTINUED) DESCRIPTION OF THE SYSTEM (P, D, E,) 
SHEET 2 OF 3 

Figure 5. (Continued) 
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e(E)~- c (E) -t-e(T), T — *.) 

N4. (CONTINUED) DESCRIPTION OF THE   SYSTEM (P, D, E,) 

SHEET   3 OF 3 

Figure 5.     (Concluded) 
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SECTION VI 

THE EXTENDED MODEL APPLIED TO A SET OF COBOL PROGRAMS 

INTRODUCTION 

In this section we consider four of the five shortcomings of the 
system (C_, D)  discussed in Section III.  We will not deal here with 
units of lockout other than the file; this matter is reserved for 
consideration in Section VII.  We will consider: 

1) a dynamically changing set C, 

2) multiple concurrent reading of the same file, 

3) coordination of data and other resource sharing, and 

4) strategy decisions available to the application designer. 

As background to these four considerations we will discuss, in the 
next sub-section, the general requirements imposed upon the COBOL 
programs by the extended model of Section IV. 

GENERAL CONSIDERATIONS 

We are concerned with a system (C_, I), E-^) as defined in Section 
III and naturally extended by the development in Section IV. 

The extension to include differentiation between read-only use 
and other use of a file implies the addition of a declarative state- 
ment or clause to some section of the COBOL program.  This declarative 
will indicate whether the program will use a file in read-only mode 
or otherwise.  A convenient place to include such a declarative clause 
would be in the SELECT statement of the FILE-CONTROL, paragraph.  The 
compiler of the COBOL program could then create explicit Q-list and 
V-list declarations as part of the object program. 

The identification of files as read-only files might also be 
implemented.  We do not consider this possibility here because of its 
triviality, except to note the following.  Since every file must at 
some time be created and may at times require updating, the system 
designer must take some precaution that during creation or update of 
a read-only file conflict and deadlock do not occur and must also 
insure that the updater of a read-only file is not permanently blocked 
by an unending succession of readers of the file. 
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The constraint mentioned in Section III, that a COBOL program may 
not use the LINK statement, still applies in a restricted sense.  There 
are two ways in which the LINK statement may now safely be used: 

1) as a terminating statement of a program, and 

3 
2) as a CALL, with the condition that the CALLing program has 

declared all the files which may be used by itself and all 
the programs which may be activated by the CALLing LINK 
statement. 

1) means that the COBOL program closes all the files which it 
had opened; in executing the LINK statement, it causes two things to 
happen: 

i)  it causes itself to leave (C, D, E ), and 

ii)  it causes the LINKed-to program to enter (C_, D, E ). 

Restrictions need not be imposed upon the passing of parameters from 
one to the other of the LINKed programs except, of course, the acti- 
vated program could not attempt to open a file whose name had been 
given as a parameter if that file had not been declared by it. 

2) means that the collection of programs including the one which 
first executes the LINK statement and all programs subsequently 
activated as a result of the execution of that LINK statement are 
essentially to be considered as one program by the system.  In this 
context it is helpful to think of this collection of programs as one 
process.  In this use of the LINK statement, the program executing 
it expects control to be returned to it upon completion by the pro- 
gram to which it had LINKed.  While we shall not formally treat such 
a capability here, the following implementation suggestions may be 
useful.  All programs could be partitioned into two classes—process 
control modules (PCM) and process modules (PM).  The imposition of 
the following rules should suffice to avoid problems: 

Rule 1:  file and other resource declarations are associated only 
with a PCM. 

Rule 2:  a PCM may not call another PCM. 

Rule 3:  a PCM or a PM may call any other PM. 

Rule 4:  a PM may not call a PCM. 

In this case, "process1 

object programs." 

is to be considered a collection of "COBOL 
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This method is also applicable in the discussion of Section III. 

In the context of a set of COBOL programs, the restriction imposed 
by the model that only one file at a time may be opened is no restric- 
tion, since a COBOL program may open only one file at a time anyway. 

DYNAMICALLY CHANGING SET C 

In Section IV we have shown how it is possible to allow programs 
to enter and leave the system.  We proved that every entering program 
gets access to all the files it had declared within a finite amount of 
time.  In addition, in Section V, we have given a specification of an 
algorithm to be used by the scheduler of the system. 

MULTIPLE READ-ONLY USE OF A FILE 

Section IV dealt directly with the situation that a number of 
programs may concurrently be reading the same file.  Under GENERAL 
CONSIDERATIONS of this section, we showed how the intent to use a 
file in read-only mode may be declared by a COBOL program. 

COORDINATION OF DATA AND OTHER RESOURCE SHARING 

Although resource sharing in general is not a principal concern 
of this paper, the proper coordination of resource sharing (other 
than data) with the data sharing methodology presented thus far is a 
sine qua non for effectiveness of the data sharing methodology.  If 
a system allows resource sharing (in addition to data sharing), say 
of card readers, teletypes, and such, then the possibility of dead- 
lock arising out of the concurrent use of such resources and sets of 
data by a number of programs must be considered by the system designer. 

To see that a problem exists, suppose that a system (C, D, Ei) 
uses a strategy for resource sharing which guarantees that conflict, 
deadlock, and permanent blocking arising out of the use of the resources 
will not occur.  Suppose further that the strategies for resource 
sharing and data sharing are operated independently by the system— 
that is, when a request for the opening of a file is made by a program, 
the system decides whether or not to grant the request without consid- 
eration of the allocation state of the system with respect to other 
resources, and vice versa.  Then deadlock occurs in the following 
situation.  Let program PI have allocated to it resource Rl and file 
Fl and P2 have R2 and F2; let PI request F2 and have its request 
denied; let P2 request Rl and have its request denied; then PI and 
P2 wait forever while the system ignorantly proceeds without them, 
thinking that all is well. 
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The solution to this problem for a given system depends upon the 
chosen strategy for resource sharing.  Presented here,is a solution 
in the context of the strategy developed by Habermann."»1'  An exten- 
sion of that strategy is required in order to prevent permanent block- 
ing (see Holt(3)).  The system designer may choose to use Holt's 
solution'-^) to accomplish this or may convince himself that the strategy 
developed in Section IV of this paper will also serve.  In any case, 
coordination of data and resource sharing is accomplished simply 
through the safe permutation (sequence) of programs by requiring that 
the permutation satisfy both the requirements 

i)  (VPk e S) bfc < r(t) + £ 
s(X) £ s(k) 

(see reference (6), page 375), and 

cA(t) 

ii)  for each P, , k e (l, 2 n-l) , 

P.-y»P  for j e {k+1, k+2, 
J   k 

(see Theorem 3, Section I). 

, n} 

Caveat emptorl  While I am intuitively convinced that the solution 
offered is a correct one, I would not depend on intuition alone for 
the design of a real system—rather I should insist on a rigorous 
description and proof of such a solution. 

STRATEGIES FOR THE APPLICATION DESIGNER 

The hypothetical system design developed thus far does not allow 
strategy decisions by the application programs designer sufficient to 
adapt it to a reasonable range of problem structures. On the contrary, 
unless the application is suited to the supposed system, the system 
must be considered inadequate in spite of any strategies imposed by 
the application programs designer. 

Besides the strategy of separating out read-only-data, the appli- 
cation designer can encourage the development of programs which keep 
non-read-only-use files open for as short a time as possible; the 
effect would be to keep blocking to a minimum.  However, the situation 
wherein a program to update a file must wait until all other users of 
the file have relinquished use of it cannot be escaped by strategy 
imposed by the application programs designer. 
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The latter, inherent characteristic of the system is its most 
serious shortcoming—stated another way, the system does not provide 
the potential to achieve effective sharing of data concurrently unless 
the data are static. 

SUMMARY 

As we have seen, the model, directly applied as we have done in 
this section and Section III, produces something less than what will 
satisfy us. 

Good purpose will be served by reviewing what has been achieved 
thus far.  We have done the basic work required for the production of 
a real system which: 

1) allows multiple-user data base sharing (although restricted 
as we have seen), 

2) prevents conflict, deadlock, and permanent blocking among 
and of programs, 

3) requires only slight modification to an existing, familiar, 
applications programming language (COBOL), 

4) guarantees the integrity of the data base without qualifica- 
tion, and 

5) guarantees that integrity of information output can be 
achieved. 

The fifth point deserves some exposition, especially because it 
describes a property of a system which we might be willing to compro- 
mise for the sake of achieving some other goal.  What "integrity of 
information output" means is this—information produced by a program 
and derived solely from the data base can be guaranteed to be correct 
in the sense that the data extracted from the data base were semantically 
correct at the time of extraction (assuming of course semantic correct- 
ness at the time of creation).  The sense of this guarantee is perhaps 
best illustrated by a negative example.  Output which is semantically 
incorrect can be produced simply by concatenation of data elements 
which are anachronistic with respect to each other; many familiar 
examples will suggest themselves to the reader.  Point 5 says that by 
appropriate design of a program, it can be guaranteed that such loss 
of information integrity will not occur. 
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If we agree that we are unwilling to compromise the properties 
suggested by points 1 through 5, then we are left with only one direc- 
tion in which to proceed.  Namely, we have the task of increasing the 
potential for concurrent use of the data base without giving up the 
desirable properties mentioned above. 

One method suggests itself—to change the unit of lock-out from 
the file to the record.  A moment's thought of this, however, will 
lead to the conclusion that the method is undesirable.  For, consider 
what it would mean:  one, that all records which might be used by a 
program would somehow have to be declared by that program; two, that 
upon release of every record the system scheduler would have to go 
through the strategy for prevention of permanent blocking; three, 
that the scheduler would have to perform the safety algorithm every 
time a record was requested. 

A seemingly better method is to introduce a third use-mode for 
files which will add the following properties to the system: 

1) many programs may operate concurrently on the same file in 
this use-mode, operation to include changing data in the file; and 

2) the application designer will have sufficient strategy latitude 
to structure sets of programs which can perform a reasonable 
range of applications. 

In the next section we extend the model in the direction we have 
indicated. 

4 
In the usual COBOL sense. 
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SECTION VII 

EXTENSION OF THE MODEL TO INCREASE POTENTIAL FOR CONCURRENT USE OF DATA 

INTRODUCTION 

In this section we define a third use-mode for elements of S— 
inquiry-use-mode.  Rules for the use of elements of S by processes 
of P_ in this mode are developed.  Finally, as for the extensions 
introduced in Section IV, we show harmonious cooperation among the 
members of P. 

INQUIRY-USE-MODE 

We have previously identified two use-modes for elements of S 
by processes in P_: 

i)  read-use-mode, and 

ii) write-use-mode. 

Read-use-mode allows unrestricted read-only use of an element of S 
concurrently by a set of processes in P_; write-use-mode allows 
unrestricted use of an element of  S by a single process in P_. 

Inquiry-use-mode will be defined to allow restricted reading and 
writing of an element of  S  concurrently by a set of processes in 
P. 

STRUCTURE OF THE DATA 

The structure of the data base, D,  is extended as follows. 
Let each element of S be a finite set of elements. 

notation Small Greek letters denote elements of an element 
of S; e.g., a, 6, Y»   
Since the elements of an element of  S,  say  a e S, 
are countable, we can denote a e S by 

k 

U t«i> 
i=l 
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where k is the cardinality of a;  the ordering 
implied by 

k 

i-1 

is to be considered arbitrary—we wish to identify 
elements of a not to order them. 
R'  will denote a binary relation on the set 
US = (a: 3a e S such that a e a}.  If a is 
R'-related to B, we write aR'B . 

definition a and 6  are comparable if either aR'B  or gR'a. 
We denote this situation by a •*-*•  B • 

definition We will extend the concept of comparable elements 
of S  as defined in Section II.  If a and b 
are elements of S, we will say a and b  are 
comparable if 

(i)  aRb; 
(ii)  bRa; or 

(iii)  there exist a e a and B e b such that 
a •*•*• @. 

We will denote this situation by a «-»• b. 

remarks If  a and b are comparable by the definition in 
Section II, they are comparable by the definition 
in this section.  Also, if a e a, B e b, and 
a •*-*•  B»  then a «-+• b by definition. 

semantics The motivation for the introduction of finer 
structuring of JJ derives from the discussion of 
the previous section.  In that discussion,  a e S 
corresponds to a COBOL file,  a e a corresponds 
to a record of the file a. 
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CONFLICT AND DEADLOCK 

Let  (P, D, E1, E•)  denote the system (P, D, Ej)  extended as 
in this section. 

Let each Pi have associated with it a subset Ii of S at 
each moment of its engagement and let Ji denote the upper bound for 
Ii for a run of ¥±.     Ii is to be understood to contain all elements 
of S which Pi is currently using in inquiry-use-mode. 

We have: 

i)  W. cv 

ii)  if V  is changed to V|, then V! C V 

iii)  R. <= QJ 
1 — i 

iv)  if Q.  is changed to Q'   then Q' C Q 

v) l±S\ 

vi)  if J.  is changed to J!,  then J' C J 

vii)  J , V , Q.  are pairwise disjoint (i.e., 

v  n j  = v  n Q  = Q  n J   = *). 

Note that vii) implies that Wi, Ri, Ii are pairwise disjoint.  Also, 
let each Pi have associated with it a set Ki during each moment 
of its engagement, the elements of which are those elements of elements 
of  Ii which Pi is currently using.  If b e Ii and Pi is 
using $ £ b,  then 6 e Ki. 

notation Let L/TVW...  denote T U V U W ...  for any subsets 
T, V, W, ...  of  S. 

definition       P.  conflicts with P.  if 
         i    J 

URWI. +-»• W.,  or 
i    J 

W. *•*•  URWI. ,  or 
i        J 

R. •*•* I. ,  or 
i    J 

I. *-*• R.,  or 
i    J 

K. •*-*•  K. 
i    j 
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The relation K^ «-»• Kj  means ?±    is using some element  a, 
and Pj  is using some element  B such that a •*•*  6.  We will con- 
stitute the rules of behavior for the processes to disallow such a 
situation; we must also formulate the rules so that deadlock is 
avoided.  We have allowed that I± •*-*•  Ij  may hold during a concurrent 
run of Pi and Pj.  This means we are allowing, for some elements 
c e Ij  and d e Ij  such that  c •*-*•  d,  that P^ and Pj  may con- 
currently be using c and d,  respectively.  We have not established 
an upper bound for the set K;  at the same time we disallow K^ •*-*•  Kj ; 
therefore, we must, by means other than foreknowledge of a bound on 
K,  insure that deadlock cannot occur because of inquiry-use-mode. 

To provide an intuitive justification of the rules to be proposed, 
consider the following example of deadlock.  Let P^ and Pj  be 
engaged, with 1^ and Ij  non-empty.  Let these conditions pertain: 

a e I 

a, 6 e a 

X,6 e    b 

K± = {a} 

K = {X}. 

Then, if the next action of Pi is to change K^ to  {a, 8} and 
the next action of  Pj  is to change Kj  to  {X, <5}, then deadlock 
occurs since we disallow Ki -«-+ Kj , which would be caused by either 
action (since a •*-*•  <5  and  g •*-*•  A) .  Looking at an earlier time in 
the proceedings of Pi and Pj,  suppose that at some moment  t^ 
we had Ki = {a}  and Kj = <\>    and Pj  attempting to change Kj  to 
{X}.  At moment t^ we could not tell whether deadlock would occur 
as a result of allowing Kj = {X} since no upper bound for K is 
given; at the same time, since we allow Ii •*->• I j,  the possibility 
of deadlock always exists whenever we have Ii •*-»• I j . 
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We therefore impose the rule that K may contain only one ele- 
ment at a time; this will avoid the deadlock of the previous example, 
but is not sufficient in general.  For consider the following example. 
Let the situation be as in the previous example with Ki = {a} and 
Kj = {A}.  With the new rule,  Pj  is not allowed to attempt to cause 
Kj = {A, 6}, nor is Pi allowed to attempt to cause Ki = {a, $}. 
Suppose Pj  reduces Kj  to the empty set and then attempts to cause 
Kj = {6};  since a •*-*• 0, we can assume that Pj will be queued, 
pending (at least) reduction of Ki to the empty set by P-^.  However, 
suppose that the next action of Pi  (while Ki = {a} holds) is to 
request some element v e Vi such that v +-*• w e Wj ;  then deadlock 
occurs again since Pi will be queued because of its request. 

Therefore, impose the additional rule that if Ki ^ <|>,  then 
the next action of Pi with respect to I) must be to cause Ki = <J>. 
In other words, for any Pi, Pi may use only one element of an ele- 
ment in li at a time and during the time that Pi is using such an 
element it may not request the use of any other elements in S. 

POTENTIAL BLOCKING 

The definition of potential blocking is a straightforward exten- 
sion of the definition of Section III. 

definition       P. -*• P.  if  i i  j and 
         i   j 

R. ++ UJV.  or 
i       3 

I «-* UQV.  or 

W. +-* UjQV.. 
i        J 

Note that the notion of potential blocking does not include any 
consideration of the K's  associated with Pi  and Pj.  This means 
that we shall have to concern ourselves with the explicit proof that, 
under the rules of cooperation to be stated, some process may take its 
next action; that is, it no longer suffices to show that there exists 
some process which is not potentially blocked in case the situation is 
safe. 
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THE SAFE SITUATION 

The definition of the safe situation is the same as in Section II, 
repeated here for convenience. 

definition The processes of P_ are in a safe situation at 
moment t if for every process Pfc the moment 
tfc >_ t  can be reached at which the relation (1) 

P. -/•> P   for every  j e N = {1, 2, ...,n}  holds. 

RULES OF COOPERATION 

The rules of cooperation are: 

Rule 1:  Each process P^ begins operation with 

a bound V-£ on its W^, 
a bound  Q^ on its R±, 
a bound J± on its Ii, 
Ii = Ri = Wi = Ki = •. 

Rule 2:  A process  P^ may not change its associated  1/lRWK-^  if 
the change would cause it to conflict with some other process. 

Rule 3: At each moment of time, one of the processes, say P,  takes 
an action, changing state in one of the following ways: 

(1) P finishes, reducing UlRWK and  UjQV  to the empty 
set; 

(2) P changes  UlRWK subject to 

i) I C J, 
ii) RcQ, 

iii) W c V, 
iv) I' C I, R' C R,  and W c W if K t $ , 
v) cardinality of the set K may not exceed 1; 

(3) P changes  U-JQV subject to 

i)  J' c J, 
ii) Q* C Q, 

iii) V c V; 

(4) UlRWK.    and    U JQV  remain unchanged. 
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HARMONIOUS COOPERATION IN (P_, D, E , E„) 

Theorem 15       Let P change its state in accordance with the 
rules of cooperation.  If in the new state P^ •+• P, 
then this was true in the old state as well. 

Proof; P± •»> P means R. «-* U(JV)'  or 

I. «-*• U(QV) '  or 

W. «-*> U(JQV)* 

where  (RST...)' means R'S'T'...  and where J*, 
Q',  and V'  are the bounds for P after its 
state change. 

Case 1:  Suppose R± -*-* U(JV) '  then either 

R. •*-* J'  or 

R ++  V . 

Subcase 1:  Suppose R- •«-*• J'.  Then, 
3reRi, j+eJ'  such that 
r •*-*•  j*.  But j' e J since 
J' C J  so that  R-L *-*•  J  and 
Pj •*•  P  in the old state as well. 

Subcase 2:  Suppose Rj_ •*-+• V'.  Apply same 
argument as for subcase 1, 
resulting in Pj •+• P  in the 
old state. 

Case 2:  Suppose Ij_ •*-*•   U(QV) '.  Apply same argument 
as for Case 1. 

Case 3:  Suppose W^ •*-*•   U(JQV) '.  Apply same argument 
as for Case 1. 
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Theorem 16       Assume that the next action of each P^ is such as 
to result in R^ = Qk, Ik = Jfc, Wk = V^.  If the 
set of processes is in a safe situation at this 
moment, then there exists some Pj which is not 
potentially blocked by any other process. 

Proof: The argument is the same as for Theorem 13. 

Theorem 17       If a safe permutation of the processes exists, 
then the situation is safe. 

Proof: Suppose that a safe permutation exists.  Then rela- 
tion (2),  Pj -/->  Pk for j e {k+1, k+2, ..., n}, 
holds for each k e N = {l, 2, ..., n}  and for Pi 
it is true that Pj -/-> Pi for j e N.  By Theorem 
15 and Rule 3,  P^ may complete all of its actions: 

Theorem 15 guarantees that P^ cannot become 
blocked by any action it takes.  Also Pi 
cannot conflict with any other process except 
by causing Ki •*-*• K±     for some i E N.  Sup- 
pose that at some moment it happens that an 
action of ?i    would result in Ki •*-+ K±     for 
some  I e N.  Then P]_  cannot proceed. 
However, Rule 3 guarantees that: 

i)  Pi's next action with respect to I) 
can only be to cause Kj_ = $; 

ii)  P^ may take its next action with 
respect to J) since K± ^  4>  implies 
that Pi's  last request was granted, 
so that Pi has not been queued 
pending grant of a request. 

Thus, let Pi proceed until K±  = <f; at this 
moment, Pi is still not potentially blocked 
since the action of Pi could not cause 
P^ •+• Pj_,  and Pi may take its next action 
since Ki •*-*• Kj  cannot occur for any j e N. 

Proceed in this way until Pi finishes, say at 
time t'.  At time t', it is true that Pj -h>  ?2 
for j e N.  Continuing in this way, we find that 
it is possible to reach a moment  tfc for each P^ 
such that P, -h>  P.  for every j e N. j     k 
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Theorem 17 does not prove harmonious cooperation of the processes 
under the scheduling strategy developed in Section IV,  since in the 
proof of Theorem 17 we used an arbitrary strategy which forced a state 
of the system in which a particular process could proceed.  Theorem 17 
does show that it is possible for every process to proceed to comple- 
tion of its run. 

We wish to show in the next theorem that the processes cooperate 
harmoniously with the new rules, operating under the scheduling 
strategy of Section IV. 

Theorem 18       Let  (P, J3, E]_, E2)  be a system wherein strategy 
a is used by the scheduler.  Then  (P_, D, El, E2) 
is a  system of processes which harmoniously cooperate 
in the processing of a common set of data. 

Proof: We must show that for arbitrary Pq £ (J., Pq remains 
in 2.    f°r a finite time.  First we show that 
P-f e (£ remains in Q    for a finite time.  First, 
P| e £ implies Kj^ = cf>  so that P-[ cannot cause 
entry into ^ of a process which attempts to 
change the cardinality of its associated K from 
0 to 1.  If ?[    entered (£ for the reason that it 
had attempted an action other than change to K£, 
then P-J  leaves ^ in a finite time as shown in 
Section IV  Theorem 14.  If P{ entered £ for 
the reason that it had attempted to change cardinality 
of K| from 0 to 1, then 3 Pe e E such that Ke 
contains the element which Pj  had requested. 
Since Pe's next action with respect to I)  can 
only be to cause Ke = 4>, F{  leaves Q upon 
release of the element in Ke by Pe«  At this 
moment  P'  becomes P.', and so forth. 
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SECTION VIII 

THE MODEL (P, D, E , E„) APPLIED TO A SET OF COBOL PROGRAMS 

INTRODUCTION 

This section extends the discussion of Section VI.  However, 
in consideration for the reader who may wish to give particular 
attention to the system of cooperating COBOL programs without having 
to labor through the development of the mathematical model, we shall 
use again the approach used in Section III.  That is to say, we shall 
present a description of a realization of the mathematical model in 
terms of a set of COBOL programs, restating the results obtained in 
narrative form, wherein the readers intuitive notions replace the 
formalisms and proofs of the mathematical model.  For such a reader 
it will be helpful if he has read the motivating narrative sections 
and the statements of the theorems in the discussions of the mathe- 
matical model.  The reader who has closely followed the development 
of the model may wish to skip ahead to the DISCUSSION OF THE SYSTEM 
(C, D_, E^, E2) on page 75 of this section. 

STRUCTURE OF THE DATA 

The abstract model of a data base  D_ = (S, R)  is interpreted 
as follows: 

Let the elements of S = {a, b, c, d, ..., z}  represent files 
in the COBOL sense.  For any file f let the elements of 

f = {r,. - , r 
f,l* rf,2' •*•' rf,k } 

represent records of the file  f  in the COBOL sense.  Then we have 
the simple result that two COBOL files  f and g are comparable if 

i)  f = g,  or 

ii)  there is some record in f,  say rf -£,  and some record 
in g,  say r  .,  such that  r, . = r 

g,J f,i   g,J 

For our hypothetical system we shall assume the usual COBOL data 
structuring so that condition ii) implies condition i)—that is, 
files are either identical or have no records in common. 
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COOPERATING PROGRAMS 

We shall consider a "COBOL object program" or "a set of COBOL 
object programs" as discussed in Section VI (see page 53) to be a 
"process" and shall simply use the term "program." We consider the 
cooperation of a finite set of programs operating concurrently on 
the data base p_ = (S, =)  according to the rules of cooperation of 
the model (to be restated later in this section).  Each program takes 
a finite number of actions so that it is guaranteed that a program, 
once begun, will terminate its processing. 

USE MODES FOR FILES 

Each program, at the inception of its run, declares to the system 
its intention to use some set of files in B    (the data base).  Included 
with the declaration of the file name is a declaration of intended 
mode of use.  (See Section III, page 22, and Section VI, page 52 for 
a discussion of how these intentions might be included in the COBOL 
program). 

Available to the program are three modes of use: 

i)  write-mode, 

ii)  read-mode, and 

iii)  inquiry-mode. 

These modes of use are of great significance to the data-sharing 
Scheduler of the system:  they provide a set of guidelines used by 
the Scheduler in determining which requests for use of a file or 
record may be granted and when.  From the point of view of the COBOL 
programmer, these use modes have the following meanings: 

i)  write-mode:  the programmer wants exclusive use of the 
file; when the program has been granted access 
to the file, no other program will be granted 
access to the file until the program declares 
that it is finished using the file (CLOSEs 
the file); 

ii)  read-mode:  the programmer wishes only to read the file and 
is therefore willing to allow other programs 
besides his own to read the file at the same 
time; the programs must not change the file in 
any way; 
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iii)  inquiry-mode: the programmer wishes to both read and update 
records of the file; he knows that the records 
of the file are independent in the sense that 
it is sensible to change only one record at a 
time; he is willing to share the file with 
other users so long as they obey the same 
rules as he does; moreover, he expects (and 
the Scheduler will guarantee) that no other 
program will simultaneously have access to 
the same record as his program; when operating 
in this mode, the program cannot take any 
action on the data base except to relinquish 
use of a record of an inquiry-mode file once 
it has gained access to that record. 

For a given program C^ we shall denote the set of files it 
wishes to use in write-mode by the notation V^,  the set of files it 
wishes to use in read-mode by Q^,  and the set of files it wishes to 
use in inquiry-mode by J^.  These sets,  V"i, Q±, Ji establish the 
claim set for C^.  Throughout the course of a run of C^  the 
Scheduler will keep account of files actually in use by Ci with a 
matched set of sets denoted by W-[, R^, 1^ with the matching 

Wi" Vi 

I± -  J . 

For example, at some moment during a run of Ci we might have 

V^ = {a, b, e} with W. = {a, b}, 
1 i 

Q± - (c, f} 

J±  = (d, g} 

with R± = {c}, 

with I = {d}, 

This means that  C-^ currently has access to the files 
write-mode, the file c in read-mode, and the file d 

a and b in 
in inquiry-mode 

and that it had declared to the system that it might use files a, b, 
and e in write-mode, files 
and  g  in inquiry-mode. 

and  f  in read-mode, and files  d 
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CONFLICT, DEADLOCK, AND PERMANENT BLOCKING 

The rules of cooperation of processes and the rules of the Scheduler 
developed in the mathematical model of the preceding sections have been 
formulated to avoid the situations which we shall now discuss. 

Two programs,  Ci and Cj,  conflict if they are both using the 
same file in any of the following mode pairs: 

C         C. 
 i J_ 

write write 
write read 
read write 
inquiry write 
write inquiry 
inquiry read 
read inquiry 

or if they both have access to the same record of a file which they 
are both using in inquiry-mode. ' The data-sharing Scheduler prevents 
conflict by denying any request which would cause conflict if the 
request were granted; the requesting program is queued and will auto- 
matically be unqueued and granted access as soon as it is possible 
(in the mathematical model it was proved that this occurs within a 
finite amount of time). 

Deadlock is the situation wherein two or more programs mutually 
prevent each other from taking their next actions forever.  This 
would happen if, for example,  Ci requested access to b and Cj 
next requested access to  g while the situation: 

W = (g> R. = {b} 
and     J 

V. = {g, b} Q = {g, b} 

existed because the Scheduler would queue C^  (because Cj  is 
using b  in a non-compatible mode) and then the Scheduler would 
queue Ci     (because Ci has use of g in a non-compatible mode). 
The Scheduler prevents deadlock by not allowing the potential for 
such a situation—in this case it would either have denied use of  g 
to  C.  or use of b  to  C.. 

i J 

Permanent blocking is a condition wherein a program is indefinitely 
delayed in its progress because of a sequence of allocation states 
which make it unsafe at any moment for the Scheduler to grant a request 
for use of a file which the program had made.  The Scheduler prevents 
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permanent blocking by detecting the possibility of such a sequence of 
allocation states and creating a situation which will force an alloca- 
tion state wherein it is safe to allow the potentially indefinitely 
delayed program to proceed. 

The Scheduler algorithms are given in Section IV; they are 
trivially extended to cover inquiry-mode by the rule given in 
Section VII, page 62.  In the previous sections, we have proved that 
the Scheduler prevents conflict, deadlock, and permanent blocking. 

THE SAFE SITUATION 

The programs of the system are in a safe situation at some 
moment if every program can have simultaneous access to all of the 
files it had declared in its claim set (V, Q, and J) within a finite 
amount of time.  The rules of cooperation and the data-sharing 
Scheduler guarantee that the programs of the system are always in a 
safe situation. 

RULES OF COOPERATION 

The programs must operate according to the following rules: 

Rule 1:  Each program C begins operation with an established claim 
set, 

V - the set of files it might use in write-mode 
Q - the set of files it might use in read-mode, and 
J - the set of files it might use in inquiry-mode. 

At inception W associated with V, R with Q,  and I 
with J are established and are initially empty (since the 
program has not yet had a chance to OPEN a file). 

Rule 2:  A program may not OPEN a file if the OPENing would cause it 
to conflict with some other program (the program may attempt 
to do so, but the Scheduler enforces this rule and queues 
the program). 

Rule 3: With respect to the files which a program C is using or 
might use, the program may change its state in one of the 
following ways: 

(1)  C finishes, relinquishing its hold on all of the files 
it was using or might have used; 
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(2) C changes W, R, or I by opening or closing a file; 
it may open any file listed in V, Q, or J or it may 
close any file listed in W, R,  or I. 

(3) C acquires access to a record of a file which it has 
open in inquiry-mode with the provision that no other 
program currently has access to the record and its next 
action (with respect to the data base) will be to return 
the record (relinquish the access privilege); it need 
not worry whether some other program has the record—the 
Scheduler enforces the rule that no other program 
simultaneously have access to the same record—in case 
this happens, the Scheduler queues the requesting program. 

(4) C changes V, Q, or J by declaring to the Scheduler 
that it does not require and will not require for the 
rest of its run one or more of the files listed in V, 
Q,  and J  (see footnote 2, page 24). 

ENTERING AND LEAVING PROGRAMS 

There are no problems about programs entering and leaving the 
system.  The data-sharing Scheduler algorithms and the rules of 
cooperation have been so constructed as to deal specifically with this 
case.  Entering programs will experience delays in getting started in 
their processing only when the Scheduler is attempting to force an 
allocation state which will remove the potential for permanent block- 
ing of some program which is already in the system. 

CREATION AND DELETION OF FILES AND RECORDS 

Creation and deletion of a file are not problems since these 
actions must be done in write-mode, which guarantees exclusive access. 
Record creation and deletion which is performed in write-mode is 
clearly no problem.  The questionable case is creation or deletion 
of a record in inquiry-mode.  However, since only one program at a 
time has access to a given record in inquiry-mode, again there is no 
problem.  (Also, see related discussion concerning indexes to random 
files under DISCUSSION OF THE SYSTEM (C, D, E , E2) on page 75.) 

Two methods of implementation for handling creation and deletion 
of files suggest themselves.  One, the data-sharing Scheduler may have 
a static information base which covers the entire universe of operation. 
In this method, an entry exists for a file in the data-sharing Scheduler's 
tables whether the file exists or not.  Two, in the case that storage 
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space is very limited, the Scheduler could dynamically maintain records 
of which files exist—in this method, perhaps a new command would be 
added to the system to inform the Scheduler that a file is being created 
or deleted. 

THE SCHEDULER 

We present in narrative form the principal aspects of the Scheduler's 
operation as follows:^ 

1) when a request for access to a file (by OPEN) is made, the 
Scheduler 

i)  checks to see that the request is legal; the file must 
have been declared and must not already be in use by 
the requesting program; also the requesting program 
must not currently have ownership of a record of a 
file which it is using in inquiry-mode; 

ii)  checks to see if granting the request would cause con- 
flict; if so, the requesting program is queued; if not, 
then the next step; 

iii)  checks to see if granting the request would result in 
a safe permutation of the processes; if so, the request 
is granted and the Scheduler notes that the requesting 
program now has access to the file it had requested; 
if not, then the requesting program is queued; in 
either case the request has been processed and the 
Scheduler is done; 

2) when a request for access to a record of a file being used 
in inquiry-mode is made, the Scheduler 

i)  checks to see that the request is legal; the file must 
have been declared for inquiry-mode and the program 
must have successfully OPENed it and the program must 
not currently have ownership of any other record of 
any other file to which it has access in inquiry-mode; 

ii)  checks for conflict; this record which has been requested 
must not currently be owned by some other program; if 
conflict, then the Scheduler queues the program; if not, 
the request is granted and duly noted by the Scheduler; 

^ See Section V for a more formal description. 
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3) when a claim set establishment request is received from a 
program or on behalf of a program, the Scheduler updates its 
tables to reflect the existence of the program in the system 
and its claim set; 

4) when access to a file is relinquished by a program (by CLOSE), 
the Scheduler 

i)  checks to see if there is some program to which it has 
given priority because the program was in the position 
where it might have been permanently blocked; if there 
is such a program, then it checks to see whether or 
not it is safe to grant that program's request; if it 
is safe, then the Scheduler grants access to the file 
to this program, notes that all program requests may 
now be considered (any program which had been delayed 
in starting because of this priority program are now 
free to make requests), and then does step iii); 
otherwise, the Scheduler does step ii); 

ii)  checks to see if any queued program had requested 
access to the returned file; if some program which 
had been queued wants access to the file which has 
just been returned but the grant cannot safely be made, 
then the Scheduler gives this program the priority 
discussed in i) and notes that no new processes may 
get access to files until this priority program has 
gained access to the file which it had requested; then 
it continues at step iii); 

iii)  checks to see if any queued programs can now safely be 
granted their requests; if so, it grants the requests 
and unqueues the programs; then it does step iv); 

iv) notes that the program which gave back the file (did 
the CLOSE) no longer has access rights to the file. 
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DISCUSSION OF THE SYSTEM (C, D, E,, E,) 

Let (C_, D, Els E2) denote the system of COBOL programs described 
in Section VI and extended according to the development of Section VII. 
Then (C, D, Ej_, E2) is a system of COBOL programs concurrently and 
cooperatively operating on a common set of files.  The characteristic 
introduced by E2 is the capability to have two or more COBOL pro- 
grams concurrently reading and updating the same file or files under 
the rules for inquiry-use-mode.  At the same time, the system retains 
the properties which guarantee that 

1) conflict, deadlock, and permanent blocking do not occur, 

2) integrity of the data base is preserved, and 

3) integrity of information output can be achieved. 

However, we must be careful to understand that inquiry-use-mode 
represents restricted use of a file.  The extent of the restriction 
will depend to some degree upon the particular implementation chosen. 
In order to explore to some extent the nature of the restriction, 
we shall further construct the hypothetical system of COBOL programs 
and then consider examples of operation. 

We have thus far assumed that each file declared by a COBOL pro- 
gram (or process) would have associated with it a declaration of 
intended mode of use—read, write, or inquiry.  Let us assume fur- 
ther that an implementation of the model is carried out so that the 
resulting system has also the properties (taken to be natural ones 
by direct application of the model) now to be discussed.  A file 
declared to have a given use mode may only be used by the declaring 
COBOL program (process) in that use mode.  Associated with each 
random file may be a set of physically separate index files.  An 
index file will be considered to be a collection of pairs, each pair 
consisting of a key and a pointer to a record in the random file 
associated with the index file.  Now let us suppose further that no 
provision has been made for declaring use mode for an index file; 
rather, when a random file is declared, an associated set of index 
files is also declared and the use mode of the index file is inexorably 
decided by the system. 

If the file is declared with use mode read or inquiry, then the 
associated index files have use mode read; if the file has use mode 
write, then the associated index files have use mode write.  We can 
now consider some examples involving inquiry-use-mode. 

i.n  this mode, an a     (element of an element of S) corresponds to a 
COBOL record. 
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Suppose that a random file, say r, with one associated index, 
say i,  is used in inquiry-use-mode by several COBOL programs.  With 
the assumed implementation, while it is true that records of the 
file may be read and updated by the several COBOL programs, it is 
not true that updating of a record in r can be allowed to affect 
the index i—in particular, a record may be neither created nor 
deleted in inquiry-use-mode.  Hence, changes to the index i must 
be done in write-mode (exclusive owner). 

With such an implementation assumed, we can readily deduce char- 
acteristics of operation of the system.  Clearly, an application 
wherein only inquiry-use-mode is normally required can be handled 
effectively.  If the application naturally allows for a cycle of 
operation in which the modes of operation alternate between inquiry- 
use and reporting/updating, then the model seems readily adaptable 
to the design of a system for the application.  However, suppose 
that an application requires 

1) inquiry-use-mode predominantly, and 

2) occasional updates which cannot be batched. 

An example of such an application is an on-line banking application 
viewed during the hours when the bank is servicing customers.  Let 
r represent a customer checking account file and let  i represent 
an index to the random file  r,  where the index key is account num- 
ber.  Imagine r being used in inquiry-mode by a number of tellers 
while  r  is occasionally used by branch managers in write-mode to 

add and delete customers (affecting i,  naturally).  Further assume 
that it is normal practice for a teller's program to open the file 
r at the beginning of the teller's hours and not to close it until 
the teller is ready to terminate his service (otherwise, an open and 
close would be done for each transaction, thereby defeating the use- 
fulness of inquiry-use-mode). Then we have the disappointing result 
that an attempt at 9 a.m. by a branch manager to add a new customer 
to the file will probably not succeed until around 4 p.m. of the same 
day (since we call W <-3> I  a case of conflict and disallow it) . 

The ingenuity of the system designer and knowledge of the appli- 
cation can both come to the rescue in this case. We can easily extend 
an access privilege to the branch managers, who, operating in good 
faith, temporarily are allowed write-use access to r  (one at a time 
naturally) even though  r  is currently open for a number of inquiry- 
mode users.  The good faith part is this - that the COBOL program 
being run by the branch manager from his terminal does not attempt to 
open other files after opening r for update.  Of course, allowing 
this program to update the file r will block out all inquiry-mode 
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users.  However, if the business of the branch manager is to open the 
file, add or delete a customer, and close the file, then we are 
dealing with a delay at a teller's terminal of only seconds.  Moreover, 
the system designer can easily convince himself that such an access 
exception does not undermine the correct operation of the system; 
he must provide, however, that access to i followed by access to 
r be considered an indivisible operation in inquiry-use-mode for 
certain types of structure for i such as hash-encoding. 

SUMMARY 

The foregoing discussion shows that the model is not a set of 
sacrosanct rules for the implementation of a system; the proper use 
of a model is to guide an implementation to the production of a cor- 
rect and effective system.  For example, while Theorem 18 of Section 
VII shows that the strategy developed in Section IV will work, prac- 
tical considerations suggest that a separate queue, say I_, for pro- 
grams suspended by an inquiry-use-mode request will reduce the amount 
of work performed by the scheduler—for the scheduler need then inspect 
1    only when an element which had been requested by a program in I_ 
is released and need never inspect Q    when an inquiry-use-mode record 
is released. 

With the addition of E2  to the system of COBOL programs, we 
have greatly extended the flexibility with which the application 
designer may approach his job.  As we have seen, implementation stra- 
tegies and adaptations of the model can add to this flexibility. 

The application designer, by appropriate implementation, is 
given these tools : 

1) an application language, COBOL; 

2) a data base structure; and 

3) three use-modes for programs operating on the data base. 

The system within which the application designer must work is suited 
to those applications wherein: 

1)  the organization of the data base can be planned ahead of 
implementation; and 
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2)  the functional requirements are known ahead of implementation 
so that each COBOL program can be tailored to do its job 
with minimum effect on other programs in the system. 
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